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ABSTRACT 

Parasitic nematode infections of humans, plants and animals are of major economic impact. 

These parasites cause losses of billions of dollars per year in crop damage and through 

livestock infection; the infections to humans are equally debilitating. Anthelmintics are the 

main chemotherapeutic agents used for treatment and prophylaxis of nematode infections 

because there is presently no effective vaccine on the market. Most of the anthelmintics 

presently used in treating nematode infections in humans were first developed for use in 

animals. In most cases, these anthelmintics have been used in humans without changing the 

properties of the drugs at all. However, resistance has been reported to the mainstay 

anthelmintics, namely AChR agonists (levamisole, pyrantel), benzimidazoles (albendazole) 

and macrocyclic lactones (ivermectin). There is therefore the urgent need to understand the 

genetics of the receptors targeted by these anthelmintics and the mechanisms of resistance, 

with the view to improving efficacy of the presently used drugs. In addition, there is the need 

to find alternative targets for developing new anthelmintics as well as fully studying the 

mechanism of action of any new anthelmintic. 

We have demonstrated the effects of the new novel-acting cyclooctadepsipeptide 

anthelmintic, emodepside, on the membrane potential and voltage-activated currents in the 

pig parasite Ascaris suum. Emodepside hyperpolarized the membrane in a slow, time-

dependent manner without changing the input conductance. We show that the purported 

emodepside target receptors in C. elegans, SLO-1 and LAT-1 are expressed in the muscle 

flap of A. suum (Asu-slo-1 and Asu-lat-1). Emodepside potentiated the voltage-activated 

Ca2+-dependent K+ channel currents in a time- and voltage-dependent manner. We have 

demonstrated that emodepside effect on the K+ channel currents is inhibited by iberiotoxin, a 
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selective SLO-1 channel inhibitor. The effects of emodepside on the membrane potential and 

K+ channel currents were modulated by NO and protein kinase activators/inhibitors. Last but 

not least, we demonstrate that diethylcarbamazine (DEC), a filarial anthelmintic, potentiates 

the effects of emodepside on the membrane potential and SLO-1-like currents. Our results 

clearly demonstrate effects of emodepside in a parasitic nematode and the modulation of 

emodepside effects by second messengers like protein kinases. We also show that a 

formulation of emodepside and DEC could be used for treating filarial parasites, slowing the 

development of resistance to emodepside. 

Finally, we show the cloning of four acetylcholine receptor subunit genes from another pig 

parasite, Oesophagostomum dentatum and the expression and characterization of these 

receptor subunits in Xenopus laevis oocytes. By employing the three ancillary factors of 

Haemonchus contortus, Hc-ric-3.1, Hc-unc-50 and Hc-unc-74, we have characterized four 

levamisole receptor subtypes of O. dentatum with different pharmacological properties. First, 

the receptor subtype we have termed Pyr-nAChR, was composed of Ode-unc-29 and Ode-

unc-63 and responded to pyrantel as the most potent agonist. The second receptor subtype, 

Pyr/Tbd-nAChR, responded to pyrantel and tribendimidine as the most potent agonists and 

was composed of Ode-unc-29, Ode-unc-63 and Ode-unc-38. The third receptor subtype, 

nAChR, responded to ACh as the most potent agonist and was composed of Ode-unc-29, 

Ode-unc-63 and Ode-acr-8. The last receptor subtype, Lev-nAChR, responded to levamisole 

as the most potent agonist and was composed of Ode-unc-29, Ode-unc-63, Ode-acr-8 and 

Ode-unc-38. In the Lev-nAChR, derquantel distinguished receptor subtypes with pA2 values 

of 6.8 and 8.4 for levamisole and pyrantel, respectively. The calcium permeability (PCa/PNa) 

of three receptor subtypes differed. We measured PCa/PNa of 10.3, 0.38 and 0.38 for the Lev-
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nAChR, Pyr/Tbd-nAChR and nAChR subtypes, respectively. Unlike the receptors in 

Caenorhabditis elegans and Haemonchus contortus, all three ancillary factors were not 

absolutely required to reconstitute O. dentatum functional levamisole receptors. We 

reconstituted receptors with robust responses to the agonists when we sequentially removed 

these ancillary factors. However, removal of all three factors did not reconstitute any 

receptors, demonstrating the need for at least one of these ancillary factors. Our results 

demonstrate the plasticity in the levamisole receptors of O. dentatum and suggest that the 

subtypes may have different physiological roles and/or expressed in different tissues of the 

parasite. 
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CHAPTER 1 General Introduction 

 

1.1 Introduction 

 
Ion channels in parasitic nematode are important targets for the drugs used in the treatment of 

these worms. These drugs (anthelmintics) are grouped according to the target sites; the 

cholinergic agonists (cholinomimetics) and antagonists act on nicotinic acetylcholine 

receptors (nAChRs) located on the nematode somatic muscle; the macrocyclic lactones 

(avermectins and milbemycins) act on glutamate-gated chloride channels; the benzimidazoles 

act on beta-tubulin to inhibit polymerization; and the more recently marketed emodepside, a 

cyclooctadepsipeptide that reportedly acts on the voltage-activated calcium-dependent 

potassium channels (SLO-1) and latrophilin-like receptors (LAT) in the free-living nematode 

Caenorhabditis elegans. These anthelmintics, among other effects, interfere with the 

movement, feeding, egg laying and growth of nematodes. The nematode nicotinic 

acetylcholine receptors, which are the targets of cholinergic anthelmintics like levamisole, 

pyrantel, morantel, tribendimidine and derquantel, are different from the vertebrate nicotinic 

acetylcholine receptors in some respects. The importance of these nicotinic receptors in 

nematodes and their attractiveness as anthelmintic target site(s) is underscored by the recent 

introduction of a new class of anthelmintics, the amino-acetonitrile derivatives (AADs, such 

as monepantel) which act on nAChRs. On the flip side, voltage-activated channels in 

nematodes are under-utilized as drug target sites. Such a voltage-activated channel, the 

voltage-activated calcium-dependent potassium channel (SLO-1, or BK channel) has been 
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hailed as the main or one of the main target sites of the recently introduced emodepside. As 

with other drugs used to treat parasites, there is a growing problem of anthelmintic resistance 

to all the major classes of anthelmintics, except emodepside. Therefore these PhD studies 

were undertaken to address two main concerns. First was to ascertain the mechanism of 

action of emodepside in the pig parasite Ascaris suum. It is important to clearly define the 

mechanism of emodepsides action in parasitic nematodes so as to curtail any problems of 

resistance. The second main aim of this PhD studies was to characterize, at the genetic level, 

the nicotinic acetylcholine receptors of another pig parasite, Oesophagostomum dentatum as 

drug target site(s) and understand some possible mechanisms of anthelmintic resistance.  

 

1.2 Thesis Organization 

 
In this thesis, a general introduction is presented about parasitic nematodes and the ion 

channels of these nematodes as anthelmintic target sites. A brief emphasis is placed on the 

cyclooctadepsipeptide emodepside, the calcium-activated potassium channel SLO-1 and the 

nicotinic acetylcholine receptors. In chapter 2, I have reviewed the literature relating to soil 

transmitted helminths, the pig parasitic nematodes Ascaris suum and Oesophagostomum 

dentatum, the voltage-activated calcium-dependent potassium channels (SLO-1) and 

nicotinic acetylcholine receptors of parasitic nematodes. In the two subsequent chapters, I 

present work done by myself and our collaborators that have either been published or 

submitted for publication. Chapter 3 deals with the “resistance-busting” anthelmintic 

emodepside and its effect on the voltage-activated currents in Ascaris suum. All the work 

outlined in this paper was done by me, except the Asu-slo-1 and Asu-lat-1 clonings which 
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were done by our collaborators at Institut National de la Recherche Agronomique (INRA-

Nouzilly) in France. Chapter 4 describes the cloning of O. dentatum levamisole-sensitive 

acetylcholine receptor subunit genes and their expression in oocytes of the South African 

frog, Xenopus laevis. The gene clonings in this chapter was done by me and our collaborators 

during my 6-month stay in France (INRA-Nouzilly). All the electrophysiological studies 

were done by me at ISU. In chapter 5, I give a general discussion and conclusions of this 

PhD research work and suggestions for future work. Appendix A contains a review paper on 

emodepside written as a follow-up to our emodepside publication; appendix B is an invited 

paper on the electrophysiology techniques we use in the laboratory. Last but not least, 

appendix C contains a review on levamisole as an anthelmintic and the renewed interest in 

studying the genetics of the levamisole receptor, the nicotinic acetylcholine receptor. 
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CHAPTER 2   Literature Review                                                             

2.1 Soil Transmitted Helminths  

 
Parasites are organisms that live inside or outside another organism mostly of a different 

species, such that the parasites benefit at the expense of the host (Wall and Shearer, 2001). 

Some parasites cause the death of their hosts whilst other parasites do not cause death of the 

hosts but poor growth, weight loss, compromised immune system, anemia and in humans, 

impaired cognitive skills. Depending on where the parasites reside, they can be classified as 

ectoparasites or endoparasites. Ectoparasites, such as ticks, live on the host body surface 

whilst endoparasites, such as parasitic worms, live inside the host. Parasites that feed off 

another parasite are known as epiparasites (Leake, 2004). Such an epiparasite is a protozoan 

living in the digestive tract of a dog flea. Unlike free-living organisms, parasites face the 

problem of living in an environment that actively seeks to destroy or repel them. The hosts of 

parasites secrete proteins and other factors in an attempt to dislodge these parasites from their 

habitat. These parasites must therefore evade the host immune system in order to establish a 

habitat, as well as produce offspring. For zoonotic parasites or parasites with more than one 

host at different life stages of the parasite, another problem is the ability to live in different 

hosts or different tissues of a host. Not all parasites are strictly parasitic at all life stages, so 

the ability to move from a free-living, non-infective stage to a parasitic stage is a specialty of 

some parasites.  

Helminths (Greek: helmins) are simply worm-like organisms. Parasitic helminths have been 

recognized since ancient times with early cures dating as far back as the 16th century (Kliks, 

1990). Human helminth infections can be traced as far back as the pre-ice age migration of 
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Homo sapiens from East Africa to all parts of the world (Cox, 2002). There have been reports 

of intestinal helminthes in old World human archaeological samples, for example, 

Dicrocoelium dentriticum in 11th century AD England (Pike and Biddle, 1966). Parasite 

species like Trichuris trichiuria and Enterobius vermicularis have been described as 

“heirloom parasites” associated with transberingeal immigrants and their dogs. These 

endoparasitic helminths (“worms”) are divided into two phyla, namely the Platyhelminths 

(tapeworms and trematodes) and the roundworms or nematodes (Wang et al., 2008). Soil-

transmitted helminths (STH) are part of the so-called Neglected Tropical Diseases (NTD). 

The three main STHs that are of worldwide concern are the roundworms (Ascaris 

lumbricoides), the whipworms (Trichuris trichiura) and the hookworms (Necator 

americanus or Ancylostoma duodenale); the estimated human population affected by these 

three alone is over 1.5 billion (Bethony et al., 2006; Hotez et al., 2007; 2008). A large 

number of these infections occur in children (de Silva et al., 2003), especially infections with 

Ascaris lumbricoides and Trichuris trichiura which generally reach peak infection intensity 

in school-aged children. The majority of infections occur in the tropic regions of Africa, 

Latin America, the Caribbean’s, Middle East and Asia where the combination of warm, moist 

and insanitary conditions creates the right environment for the eggs or larvae of these 

parasites to thrive. According to Hotez and Kamath (2009) for example, almost half of Sub-

Saharan Africa’s poorest people have hookworm infections with 40 to 50 million children of 

school going age and 7 million pregnant women infected by these hookworms. In fact, the 

burden of NTDs may be underestimated in Sub-Saharan Africa. These STH infections cause 

stunted growth, cognitive deficits, intellectual and educational retardation, distended 

abdomen and in severe cases, death. It is estimated that 12000 to 135000 annual deaths result 
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from these helminth infections (WHO, 2002, 2004). The disease burden attributed to soil-

transmitted helminthiasis is assessed by disability-adjusted life years (DALYs) because these 

infections cause more disability than mortality (WHO, 2002). Not of least concern in 

veterinary medicine is the number of infections in livestock and companion animals by these 

parasitic helminthes.  

Nematodes are very abundant helminthes, probably second only to arthropods in terms of 

numbers and species (Blaxter, 1998). Nematodes are very diverse and can be found in very 

different habitats. Parasitic nematodes, such as Ascaris lumbricoides, Brugia malayi, and 

Onchocerca volvulus produce disease burdens in humans that exceed malaria, tuberculosis 

and other better known conditions (Hotez and Kamath, 2009). Livestock parasites like 

Oesophagostomum dentatum, Ascaris suum, Haemonchus contortus, Teladorsagia 

circumcincta, and Trichostrongylus colubriformis depress agricultural production and food 

supply. Parasitic nematodes cause more than US$100 billion each year in crop damage and 

US$11 billion in economic loss through livestock and domestic animal infections (Brown et 

al., 2006).  
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Figure 2 Global distribution of soil-transmitted helminth infections 

These STHs are a public health concern in Latin America, Africa, Middle East and Asia. 

There are still infections and transmissions of the STHs in Australia and a few countries in 

Europe, although these are of limited public health concern. Modified from Savioli & 

Albonico (2004). 

 

2.1.1 Ascaris spp. and Ascariasis   

          

The genus Ascaris has two species, Ascaris lumbricoides and Ascaris suum. A. lumbricoides 

is a parasitic nematode of humans whilst the closely related A. suum parasitizes pigs. Female 

worms are generally larger than male worms; adult worms are 15 – 35 cm in length. Both 



www.manaraa.com

 8 

roundworms reside in the small intestine of their hosts and have a direct life-cycle. When 

humans consume food contaminated with Ascaris spp. eggs, the eggs reach the small 

intestine where they undergo one or two moults and hatch into larvae (Bradley and Jackson, 

2004). The larvae penetrate the intestinal mucosa, enter the blood stream and are carried to 

the liver and then the lungs. Studies with Ascaris suum suggest liver invasion occurs 1 – 2 

days post-infection and lungs invasion 5 – 6 days post-infection (Anderson, 2000). The 

larvae grow and molt in the alveoli. After about 3 weeks, L3 larvae are coughed up or 

migrate up the trachea, swallowed and re-enter the gastrointestinal tract. They mature to egg-

laying adult female and male worms in the small intestine after 9 – 11 weeks of egg 

ingestion. The female worms can lay as many as 200,000 eggs per day which when fertilized 

can become infective after about 20 days. The infective eggs can persist in the soil and 

maintain their viability for a year or more under the right warm, moist and insanitary 

conditions. A number of studies have demonstrated the viability of Ascaris spp. eggs under 

different conditions like alkaline pH and temperature (Ghiglietti et al., 1995), H2SO4 (Cruz et 

al., 2011), and sewage treatment (Johnson et al., 1998). 

Infection with A. lumbricoides results in Ascariasis. The most intense A. lumbricoides 

infection is in children. Large numbers of adult Ascaris worms can cause abdominal 

distension (Bethony et al., 2006), temporary lactose intolerance (Carrera et al., 1984), 

impaired fat digestion, reduced vitamin absorption (Taren et al., 1987). These might in turn 

lead to nutritional and growth deficits, especially in children (Stephenson et al., 1980). In that 

regard, some studies have found a positive correlation between weight gain in children and 

treatment with anthelmintics (Stephenson et al., 1989; Stephenson et al., 1993a, b) or 

Vitamin A supplementation (Donnen et al., 1998). Aggregation of adult worms in the ileum 
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of children can cause its obstruction (Villamizar et al., 1996) with attendant complications 

like volvulus, intussusception, bowel infarction and intestinal obstruction (Khuroo et al., 

1990). Because adult Ascaris move in children with high fever, they may appear in the 

nasopharynx or anus of these children. Migration of Ascaris spp. larvae may cause localized 

reactions in various organs. Penetration of lungs by these larvae can cause Loeffler’s 

pneumonia, in which pools of blood and dead epithelial cells clog air spaces in the lungs 

(Gutierrez, 2000). 

Over 800 million people are estimated to be infected with A. lumbricoides in the tropics and 

subtropics (Hotez et al., 2007; Hotez, 2008). In Ghana, for instance, some vegetable growers 

use wastewater to irrigate their farms, putting themselves and consumers of vegetables from 

those farms at risk of Ascaris and other nematode infections (Seidu et al., 2008). It is 

estimated that about 200,000 people per day in Accra consume lettuce grown on such farms, 

an indication of the number of people at risk of Ascaris infections (Amoah et al., 2007). 

Mass drug chemotherapy programs in Ghana for STHs is only focused on children of school-

going age, leaving those who are not in this category as a reservoir for Ascaris lumbricoides 

(and other parasitic nematode) reinfections (Tay et al., 2010). 
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Figure 2.1 Life cycle of Ascaris spp.  

Modified from www.metapathogen.com/roundworm/ (Accessed on 01-18-12 at 10:38AM 

CST) 

  

http://www.metapathogen.com/roundworm/
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2.1.2 Oesophagostomum spp. and Oesophagostomiasis 

 
Oesophagostomum spp. are helminthes that belong to the family Strongyloidea. The 

subfamily Oesophagostominae is rich in species that parasitize pigs, ruminants, primates, and 

rodents. These parasites cause Oesophagostomiasis in the host, which is characterized by the 

formation of nodular lesions mostly in the small intestines of these hosts. Therefore, 

members in this genus of parasitic nematodes are also known as nodular worms. There are a 

number of reports of Oesophagostomum bifurcum infections of man, although these 

infections are mostly localized to the northern parts of Ghana and Togo, West Africa (Pit et 

al., 1999; Storey et al., 2001; Yelifari et al., 2005; Ziem et al., 2005; 2006). O. bifurcum 

infection of humans causes uninodular and multinodular lesion formation in the entire colon 

wall, resulting in general abdominal pain, persistent diarrhea, and severe wasting, as well as 

accounting for about 1 % of major acute surgical procedures in northern Ghana (Storey et al., 

2000). Adult worms are about 7-15 mm long.  

The oval Oesophagostomum spp. eggs are passed in feces and develop rapidly into first-stage 

larvae as early as 24-hours at optimum temperatures. First-stage larvae (L1) feed on bacteria 

in the environment and develop into second-stage larvae (L2) 24-hours after hatching. The 

second-stage larvae subsequently moult to infective larvae (L3). The host is infected by 

ingesting third-stage larvae. The infective larvae then invade the intestinal mucosa, develop 

to the fourth stage and re-enter the lumen of the large intestine. Most larvae moult to the 

adult stage in 20-30 days. The adult worms live in the large intestine where they lay eggs 

(Anderson, 1992). Figure 2.2 shows the life cycle of Oesophagostomum spp.  
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The different Oesophagostomum spp. parasites that infect livestock are O. radiatum (infect 

cattle), O. asperum (parasitize caecum and colon of goats), O. columbianum (parasitize large 

intestines of sheep, goats, alpaca), O. venulosum (parasitize sheep and goats), O. 

quadrispinulatum and O. dentatum (parasitize pigs). The two Oesophagostomum parasites of 

pigs usually coexist in the same host and appear to be less pathogenic than the species that 

parasitize other animals (Steward and Gasbarre, 1989). They cause nodular lesions most 

obvious in the caecum and mid-colon. These parasites can maintain high worm burdens in 

the pig without eliciting immune responses (Roepstorff and Nansen, 1994). O. dentatum are 

cosmopolitan parasites found in the large intestine of pigs. O. dentatum and Ascaris suum 

usually infect pigs concurrently (Helwigh et al., 1999). Although there are little to no 

estimates on the impact of O. dentatum infections of pigs, these parasites are economically 

important, but less so when compared with A. suum and other more pathogenic parasites of 

livestock. 
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Figure 2.2 Life-cycle of Oesophagostomum spp.  

Insert shows the nodular lesions caused by these parasites. The life-cycle of the animal 

parasites are not significantly different from the life-cycle of the human parasite, O. 

bifurcum. Modified from Gasser et al. (2007) and 

http://en.wikipedia.org/wiki/File:Life_cyc.jpg (Accessed on 01-27-12 at 6:08PM CST) 

 

  

http://en.wikipedia.org/wiki/File:Life_cyc.jpg
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2.2 Nematode Muscular and Nervous Systems 

 
The neuromuscular system of Ascaris spp. is perhaps the earliest well-characterised 

neuromuscular system of nematodes. The body muscle anatomy was described as early as 

1866 (Schneider, 1866). It is unique and different from the neuromuscular system of 

vertebrates, in that the muscle cells send projections to the nerves instead of the other way 

round in vertebrates. Ascaris spp., as well as other nematodes have a fixed number of cells 

and cell divisions (del Castillo et al., 1989). Another unique feature about this nematode is 

the small and constant number of neurons (ca 250) and the large cells which make up its 

musculature. The literature review on nematode neuromuscular system below follows that of 

Ascaris lumbricoides and Ascaris suum.  

 

2.2.1 Nematode Muscular System 

 
The anatomy of nematode body muscle, as previously stated, is unique because the muscles 

send projections to the nervous system. From the outside, a transverse section of Ascaris 

body is composed of three concentric rings of cuticle, hypodermis and somatic muscle layer, 

Figure 2.3A (Martin et al., 1991). The somatic muscle layer surrounds the perienteric cavity 

which contains the gut. The mononucleated muscle cells are separated into the dorsal and 

ventral fields by the two lateral lines (del Castillo et al., 1989) and they contract in opposition 

to produce motion (Weisblat and Russel, 1976). The muscle cells are about 5 x 104 in 

number, which are kept reasonably constant (Stretton, 1976). Anchored below the 

hypodermis is the obliquely striated contractile substance, known as the spindle or fibre 
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(Rosenbluth, 1965a, 1967, 1969). The thin and thick filaments are arranged in an acute angle, 

permitting the smooth muscle to be greatly extensible whilst maintaining the velocity of 

contraction (Robertson and Martin, 1993a).  

According to Martin and Donahue (1987), the excitatory neurotransmitter ACh produces fast 

contraction of the muscle through Ca2+ fixation by the actin whilst a change in the light chain 

myosin phosphorylation state is associated with relaxation produced by the inhibitory 

neurotransmitter GABA.  Close to the mid-section of the spindle, the muscle cell forms a 

balloon-like, 200 µm structure known now as the bag or belly. The muscle bag, Figure 2.3B, 

lies in the perienteric space and contains the single nucleus of the muscle cell, submembrane 

mitochondria and particulate glycogen (Rosenbluth, 1965b). Each muscle cell sends 

processes known as muscle arms which arise from the base of the bag and cross transversely 

to the syncytium over the nerve cord. Most muscle cells possess a mean of 2.7 muscle arms 

(Stretton, 1976). The arms at the nerve cord branch into thin, finer terminal processes known 

as ‘fingers’ which form tight, intertwined junctions with the ‘fingers’ of adjacent arms at the 

syncytium. These tight ‘fingers’ extend longitudinally apposed to the nerve cord and are 

responsible for the electrical coupling between adjacent muscle cells (DeBell et al., 1963). 

The syncytium and nerve cord fibers form neuromuscular junctions in Ascaris. 
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Figure 2.3 Ascaris body section and muscle structure  

(A) Transverse section of anterior portion of Ascaris body showing arrangement and position 

of the nerve cords, lateral line, hypodermis, syncytium, cuticle, muscle bag, gut and 

perienteric fluid. (B) Structure of the muscle of Ascaris showing the 200 µm muscle bag, the 

spindle, muscle arm and location of syncytium and nerve cord. From Martin et al. (1991).  
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2.2.2 Nematode Nervous System 

At the head region of Ascaris is the circumferential nerve ring and associated ganglia that 

surrounds the pharynx. The ganglia associated with the anterior nerve ring are 5 in number, 

namely a dorsal ganglion and a ventral ganglion, two lateral ganglia and a retrovesicular 

ganglion. The retrovesicular ganglion contains 13 neurons (Angstadt et al., 1989). At the 

posterior region of the worm is another smaller set of ganglia. Arising from the nerve ring are 

the dorsal and ventral nerve cords that pass caudally along the length of the Ascaris body 

(Stretton et al., 1978; Stretton et al., 1985). The motor nervous system of Ascaris (the 

remaining nervous system in a decapitated worm that controls movement) is divided into 5 

repeating segments. Each segment contains 11 motorneurones with their somata in the 

ventral nerve cord (Stretton et al., 1978).  

Based on their morphology (distribution of axons and dendrites), the 11 motorneurones were 

divided into 7 types. Three (DI, DE2, DE3) of the seven types occur only once in each 

segment whilst the other four types (DE1, VI, V1 and V2) occur twice in each segment. Two 

types (V1 and V2) are contained only in the ventral nerve cord but the remaining five have 

processes in both dorsal and ventral nerve cords. The processes of these motorneurones in 

both dorsal and ventral nerve cords are linked by processes known as commissures (Hesse, 

1892). According to Davis and Stretton (1989), all-or-none action potentials have never been 

observed in the commissural motorneurones of Ascaris; the all-or-none action potential is 

commonly used by nerve cells in the animal kingdom. However, synaptic transmission in this 

nematode is graded and mediated without spikes. Inhibitory potentials recorded in DI and VI 

motorneurones (Stretton et al., 1978) correlate with GABA-immunoreactivity identified in 

DI and VI motorneurones (Johnson and Stretton, 1985; Sithigorngul et al., 1989) and the 
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suggestion that these two motorneurones are inhibitory. ACh is the excitatory 

neurotransmitter in these nematodes, a suggestion supported by histochemical studies that 

identified choline acetyltransferase in DE1, DE2 and DE3 motorneurones (Johnson and 

Stretton, 1985). Also in each segment are 6 non-segmental interneurones, 3 right-hand 

commissures and one left-hand commissure, Figure 2.4. The 6 non-segmental interneurones 

which are located in the ventral cord have their somata either in the head or tail segments. In 

addition to the two major nerve cords, there is the dorsal lateral, dorsal sublateral, ventral 

lateral and ventral sublateral minor nerve cords (Johnson and Stretton, 1987).  
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Figure 2.4 Organization of the motor nervous system of Ascaris suum in one segment. 

Present in each segment are 11 motorneurones, six non-segmental interneurones running the 

length of the ventral cord. Seven morphological types of the motorneurones are found in each 

segment, all with cell bodies in the ventral cord; DI = dorsal inhibitory, VI = ventral 

inhibitory, DE1 = dorsal excitatory 1, DE2 = dorsal excitatory 2, DE3 = dorsal excitatory 3, 

V1 and V2 = ventral excitatory. Modified from Martin et al., (1991). 
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2.2.3 Electrophysiology of Somatic Muscle 

 
The resting membrane potential of Ascaris somatic muscle range from -30 mV to -40 mV. 

DeBell et al. (1963) measured the membrane potential in the nuclear bags of Ascaris 

lumbricoides in 30 % diluted sea water to be -29.86 mV. However, membrane potential of -

34.5 mV was recorded for somatic muscle cells in the presence of the perienteric fluid from 

Ascaris (del Castillo et al., 1964a). The membrane potential of Ascaris is largely determined 

by membrane conductance to anions, such as extracellular Cl- ions but less so by 

conductance to cations, such as K+ (Brading and Caldwell, 1971). Sodium ions (Na+) also 

contribute to the membrane potential, although to a lesser extent as demonstrated by 

permeability ratios of 1:4:7 for K+, Na+ and Cl- (Caldwell and Ellory, 1968). The 

composition of the perienteric fluid significantly influences the membrane potential of 

Ascaris. It contains low concentrations of Cl- and high concentrations of the carboxylic acids 

acetate, propionate, succinate, 2-methylbutyrate and 2-methylvalerate produced from 

anaerobic metabolism of glucose (Hobson et al., 1952a; Saz and Weil, 1962; Tsang and Saz, 

1973). According to Thorn and Martin (1987), high conductance Ca2+-dependent Cl- 

channels present in A. suum muscle is permeable to these carboxylic acids. Caldwell (1974) 

suggested that an active electrogenic pump moving these carboxylic acids may account for 

the state of the membrane potential. 

Intracellular recordings (Jarman, 1959) from A. suum muscle cells demonstrated the presence 

of regular, spontaneous spike-like depolarizations (up to 10 mV in amplitude) superimposed 

on the resting potential. Three types of spontaneous electrical activity are observable in the 

muscle of Ascaris, namely (i) spikes of varying amplitude up to 30 – 40 mV lasting 5 – 50 
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msec; slow wave depolarizations of 100 – 1000 msec duration and amplitudes up to 20 mV; 

and long lasting waves (3 – 20 sec), about 5 mV in amplitude, that modulate the level of 

spontaneous activity (DeBell et al., 1963; Weisblat and Russel, 1976). Figure 2.5 below 

illustrates the three types of electrical activity. Spikes of larger amplitude are usually 

observed when recording from muscles near or directly over the nerve cord. Slow waves are 

not artifacts with recordings or movements because under conditions where contractions and 

spike potentials are abolished, they still persist. The depolarization phase of these spikes is 

caused by Ca2+ currents (Weisblat et al., 1976) whilst K+ currents are responsible for the 

repolarization phase (Martin, 1982).  
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Figure 2.5 Sample traces of spontaneous electrical activity in Ascaris muscle cells.  

(A and B) Slow waves with spike potentials, showing the smaller slow waves and larger 

spike potentials. Multiple spike potentials superimposed on a single slow wave. Visible 

muscle contractions usually correlated with the electrical activity. (C) Long lasting, 

modulating potentials with ~20 sec periods. Modified from Weisblat and Russel (1976). 
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2.3 Nicotinic Acetylcholine Receptors, nAChR 

 
Acetylcholine receptors are transmembrane proteins that respond to the neurotransmitter 

acetylcholine. Early studies on the acetylcholine receptors (AChR) resulted in the 

classification of these receptors into two classes based on their pharmacology, namely 

muscarinic AChRs and nicotinic AChRs. Both cholinergic receptor classes belong to 

different and distinct protein superfamilies; the muscarinic AChRs are metabotropic and the 

nicotinic AChRs are ionotropic. The nicotinic acetylcholine receptors are large 

transmembrane proteins (290 kDa) and members of the cys-loop ligand-gated ion channel 

(LGIC) superfamily of receptors (Unwin, 2005). They have an N-terminal extracellular 

ligand-binding domain, a membrane-spanning domain and an intracellular domain. The cys-

loop LGIC superfamily of receptors also includes the γ-aminobutyric acid receptor 

(GABAA), the glycine receptor and the serotonin (5-HT) receptor. The characterizing 

features of receptors of the cys-loop LGIC superfamily are: (i) a cysteine loop in the α-

subunit separated by 13 amino acids (Gruhn et al., 2002); (ii) four transmembrane domains 

(Touroutine et al., 2005);  amino acid sequence homology and (iv) similar arrangement of 

subunits. Unlike the muscarinic AChRs, the nicotinic ACh receptors are not coupled to 

second messenger cascades but are directly coupled to ion channels. These nAChR are 

pentameric transmembrane receptors. The importance of nAChRs is underscored by their 

involvement in autoimmune and genetic disorders, such as Myasthenia gravis, Rasmussen’s 

encephalitis, Alzheimer’s disease, Parkinson’s disease, and Schizophrenia.  
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2.3.1 Vertebrate nAChR 

 
Earlier characterizations of vertebrate nicotinic AChR used the electric tissue of Torpedo 

californica and/or T. marmorata. Cloning (Ballivet et al., 1982; Giraudat et al., 1982; 

Sumikawa et al., 1982), sequencing (Noda et al., 1982; Devillers-Thiery et al., 1983; Noda et 

al., 1983) and heterologous expression of the subunits of the Torpedo nAChR has 

tremendously increased our understanding about these receptors and the cys-loop LGIC 

superfamily of receptors. Resolution of the Torpedo electric organ nAChR at 4.0 Å and 4.6 Å 

has provided useful insights into the three-dimensional structure of cys-loop LGIC 

(Miyazawa et al., 1999; Unwin, 2005). Vertebrate muscle nAChR is perhaps the best 

characterized of the family of LGIC. It is composed of 4 different subunits assembled in a 

stoichiometry of α2βγδ (Karlin, 1980; Karlin et al., 1983). In adult muscle nAChRs, the γ 

subunit is replaced by ε subunit; the γ subunit is expressed in embryonic muscle nAChRs. 

The circular order of subunit arrangement is established as αγαδβ (Karlin and Akabas, 1995). 

Unlike the muscle nAChRs, the neuronal nAChRs are far more diverse, with different 

subunit combinations based on reports of eight alpha subunit genes (α2 - α9) and three beta 

subunit genes (β2 – β4) (Millar, 2003). In addition, the neuronal nAChRs differ from the 

muscle nAChRs in sensitivities to nicotinic antagonists and single-channel properties 

(Colquhoun et al., 1987; Steinbach and Ifune, 1989). Table 2.0 below illustrates the subunit 

diversity of the neuronal nAChR compared with the muscle nAChRs. The five subunits are 

arranged like staves with an opening in the middle. The subunits are classified as alpha (α) or 

non-alpha (β, δ, ε, ϒ); the distinction is the presence of vicinal dicysteines in the α-subunits. 

Each subunit is composed of ~400-520 amino acids. In vertebrates, 16 subunit encoding 
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genes have been identified so far, with an extra subunit identified in chickens (Millar, 2003). 

The largest vertebrate nAChR subunits is found in the pufferfish, which possesses 28 

subunits (Jones et al., 2003). These nAChRs can be homopentameric (all 5 α-subunits, such 

as in vertebrate neuronal nAChRs) or heteropentameric (2 α-subunits and 3 non- α-subunits, 

such as in vertebrate muscle nAChRs).  

Each subunit has four transmembrane domains, TM1-TM4 and each transmembrane domain 

consists of approximately 20 amino acids. Available evidence suggests that TM2 in each 

subunit forms the lining of the channel pore (Hung et al., 2005; Bafna et al., 2008; Cymes 

and Grosman, 2008). The ACh binding site is at the interface of 2 adjacent subunits formed 

by 6 distinct regions of loops in the N-terminal extracellular side. Loops A, B, C are 

contributed by α-subunits and loops D, E, F contributed by either α- or non- α-subunits, 

figure 2.6C (Corringer et al., 2000). Available electrophysiological evidence suggests there 

are two non-equivalent ACh binding sites, between α1 – γ and α1 – δ subunits for the muscle 

nAChR (Kreienkamp et al., 1995). Based on the proposed binding position by Unwin (1993), 

the canonical ACh binding site is thought to be between the positive face of the α-subunit 

and the negative face of the non- α-subunit.  

According to Blount and Merlie (1989), the γ and δ subunits associate efficiently with the α 

subunit, modifying its binding characteristics. The authors observed no association between 

the α subunit and the β subunit. In agreement with that, Kreienkamp et al. (1995) reported 

that the β subunit does not contribute to the formation of a binding site but promotes surface 

expression of the assembled pentamer. However, the β subunits in neuronal nAChRs 

contribute to the formation of ligand binding sites (Luetje and Patrick, 1991; Drenan et al., 

2008). Blount and Merlie (1989) also observed that the αγ and αδ complexes formed 
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different high affinity binding sites for d-tubocurarine, accounting for the two nonequivalent 

binding sites of nAChRs. The association and oligomerization of subunits to form a 

functional receptor is governed by a number of factors.  

During the assembly process, the subunits are inserted in the endoplasmic reticulum where 

they undergo folding and post-translational modifications. Any unassembled subunits show 

little accumulation in cells and are most susceptible to degradation (Blount and Merlie, 

1990). Chaperone protein association with the subunits as well as subunit-subunit 

associations promotes the assembly process and stability of the assembled complexes. There 

are several reports of association between chaperone proteins and nAChR subunits. For 

example, the chaperone protein RIC-3 has been reported to enhance α7 and other nAChR 

subunits in attaining their correct conformational states (Ben-Ami et al., 2005a; Castillo et 

al., 2005; Treinin, 2008; Ben-Ami et al., 2009a).  

Other such proteins include the ER-residents BiP (immunoglobulin heavy chain binding 

protein) (Blount and Merlie, 1991; Paulson et al., 1991) and calnexin (Gelman et al., 1995; 

Keller et al., 1996), as well as rapsyn (43K protein) which is important in clustering of 

nAChRs at the post-synapse of the neuromuscular junction (Froehner et al., 1990; Phillips et 

al., 1991). Calnexin, according to Keller and Taylor (1998) associates with unassembled 

subunits and stabilizes them but dissociates when the subunits assemble. They also 

demonstrated that dissociating calnexin from the subunits enhanced their polyubiquitination 

and degradation in the proteasome. Inherent properties of the subunits also govern the 

assembly of nAChRs. Sequence elements in the N-terminal domain of the subunits affect 

ligand recognition and subunit-subunit interactions and arrangements, as revealed by mutated 

and chimeric subunits (Blount and Merlie, 1989; Sine and Claudio, 1991; Yu and Hall, 1991; 
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Sumikawa, 1992). Formation of the correct ligand binding sites is partly dictated by the 

specificity of subunit associations.   

Using the temperature sensitivity of T. californica nAChRs, Green and Claudio (1993) 

observed that αβγ trimers were the earliest identifiable assembly intermediates. The next 

assembly intermediates identified were αβγδ tetramers. The pentameric product is formed by 

the addition of a second α subunit to the αβγδ tetramers. A transfection study suggested that 

αγ and αδ dimers were formed first with the oligomerization of these dimers and addition of 

a β subunit to form the pentamer (Keller and Taylor, 1999).  
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Table 1 Subunit diversity of vertebrate neuronal nAChRs compared with muscle nAChRs 

 

Modified from Millar (2003) 
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Figure 2.6 Structure of the vertebrate nicotinic acetylcholine receptor.  

(A) View of the nAChR from top, showing the subunits, channel pore and ACh binding sites. 

Modified from Karlin (2002). (B) View of the extracellular ligand-binding site, 4 TM 

domains and predicted pore liner (highlighted TM2) of the nAChR. From Paterson and 

Nordberg (2000) (C) Side view of the nAChR showing the loops that contribute to the ACh 

binding pocket. From Jones & Sattelle (2010). (D) Structural and functional model of the 

nAChR showing the pore-lining M2 helix, the water pore (upper part of channel) and 

selectivity filter (lower loop). From Corringer et al. (2000).  
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2.3.2 Caenorhabditis elegans AChR 

 
The free-living nonparasitic nematode Caenorhabditis elegans possess the most diverse and 

extensive nAChR subunit gene families currently known. Completion of the C. elegans 

genome sequencing project paved the way for the identification of the nAChR gene family. 

However before completion of the sequencing project, investigation of resistance to 

levamisole  led to the identification of the subunits unc-38 (α-subunit), lev-1 and unc-29 

(both non-α-subunits) (Fleming et al., 1997). Lewis et al. (1980) observed that mutation of C. 

elegans genes like unc-29, unc-38, unc-63, lev-1, unc-50, and unc-74 leads to levamisole 

resistance. The nAChR of C. elegans fall into levamisole-sensitive and levamisole-

insensitive groups, figure 2.7B. Investigation of subunit mutations that caused neuronal 

degeneration led to the identification of deg-3 (Treinin and Chalfie, 1995) and des-2 (Treinin 

et al., 1998; Yassin et al., 2001) subunits, both α-subunits. The subunit genes acr-2 (Squire et 

al., 1995), acr-3 (Baylis et al., 1997) and acr-16 (identified as Ce21) (Ballivet et al., 1996) 

were cloned with a probe derived from Drosophila melagonaster  nAChR cDNA cross-

hybridized with either a vertebrate nAChR cDNA or already identified C. elegans nAChR 

cDNA. The genes acr-2 and acr-3 are located in the same orientation, the former only 281 

upstream of the latter. ACR-16 is closely related to the homomeric vertebrate α7. It forms a 

homomeric, levamisole-insensitive receptor at the C. elegans neuromuscular junction (NMJ), 

and together with ACR-8 accounts for all levamisole-insensitive nAChR signaling at the 

NMJ (Touroutine et al., 2005).  

Up to 29 subunits have been identified and divided into five groups based on homology of 

the sequences, figure 2.7A. These are the ACR-16 group, the ACR-8 group, the UNC-38 
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group, the UNC-29 group and the DEG-3 group. Each group is named after the first member 

identified. A set of subunits which are highly homologous to the other subunits but do not 

fall into any of the five groups are put into the ‘Orphan’ group of receptors. According to 

Jones and Sattelle (2004), the ACR-8 and DEG-3 groups represent nematode-specific family 

of receptor subunits. The C. elegans DEG-3/DES-2 receptor is localized to nonsynaptic 

regions, the sensory endings of chemosensory neurons and expression in Xenopus oocytes 

shows that it is activated by choline (Yassin et al., 2001). UNC-38, UNC-63 and ACR-6 are 

in the UNC-38 group whilst UNC-29, LEV-1, ACR-2 and ACR-3 are in the UNC-29 group. 

UNC-38, UNC-29, LEV-1 and UNC-63 are expressed in the body wall muscles, showing 

that these subunits may combine into the same receptor (Culetto et al., 2004). UNC-63 is 

additionally expressed in neurons and vulval muscles. The lev-8 subunit gene, previously 

designated as acr-13, is expressed in body wall and uterine muscles (Towers et al., 2005). It 

encodes an α-subunit in the ACR-8 group. Five subunits make up the C. elegans levamisole-

sensitive receptor. Three of these subunits (UNC-29, UNC-38 and UNC-63) are designated 

as essential subunits and the other two (LEV-1 and LEV-8) as non-essential subunits.  

Although all the C. elegans nAChR subunits possess the characterizing features common to 

all nAChRs, some of the subunits have some modifications. In the pore-lining TM2 domain, 

the members of the ACR-8 group (ACR-8, ACR-12, ACR-13) possess a histidine residue 

(basic) in place of the well-conserved glutamate residue (acidic), figure 2.7C. Additionally, 

ACR-5 from the DEG-3 group contains FxCC in the C loop instead of the highly-conserved 

YxCC motif (Jones and Sattelle, 2004). The YxCC motif is important for ACh binding and 

studies suggest that mutating this motif in α7 receptors to FxCC results in significant 

reduction in affinities for ACh and nicotine (Galzi et al., 1991). 
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Furthermore, some molecular components (genes/proteins) are known to be associated 

upstream or downstream with nAChR assembly and function. The genes, unc-50 and unc-74 

discovered in mutagenesis screens for levamisole resistance are important in nAChR 

assembly. UNC-50 is a conserved transmembrane protein localized to the Golgi apparatus. 

Eimer et al. (2007) observed that C. elegans unc-50 was required for subtype-specific 

trafficking of assembled nAChRs such that the absence of unc-50 resulted in sorting of a 

subset of the nAChRs in the body wall muscle to the lysosomal system for degradation. 

UNC-74 seems to be required solely for the expression of levamisole-sensitive nAChRs. It is 

predicted that unc-74 encodes a thioredoxin protein. Another gene, ric-3, identified in 

screens for resistance to inhibitors for cholinesterase is also important in C. elegans nAChR 

function. It encodes an endoplasmic reticulum transmembrane protein that acts as a 

chaperone in folding, maturation and assembly of multiple nAChRs (Ben-Ami et al., 2005a; 

Castillo et al., 2005; Lansdell et al., 2005; Millar, 2008). RIC-3, UNC-50 and UNC-74 are 

three important ancillary proteins that affect C. elegans nAChR assembly and function. 

These three ancillary proteins, together with UNC-29, UNC-38, UNC-63, LEV-1 and LEV-8 

are required to reconstitute functional, levamisole-sensitive C. elegans nAChR in Xenopus 

oocytes (Boulin et al., 2008). Injection of the 8 genes for these proteins reconstitutes a 

receptor that responds robustly to ACh, followed by levamisole with the least response to 

nicotine. 

In addition to these three ancillary proteins, there are other proteins that affect C. elegans 

nAChR. lev-10 was identified on the basis of mutants being weakly resistant to levamisole 

(Gally et al., 2004). It encodes a protein, LEV-10, that is required for clustering AChRs in 

body wall muscle. In the lev-10 mutants, the density of levamisole-sensitive AChRs at the 
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NMJ but not the number of functional AChRs, is significantly reduced. The levamisole-

sensitive receptors in these lev-10 mutants are distributed extrasynaptically (Qian et al., 

2008). Using these extrasynaptic levamisole-sensitive receptors in lev-10 mutants, Qian et al. 

(2008) demonstrated that lev-8 knockouts had longer single channel closed times whilst lev-1 

knockouts had smaller single-channel conductance and fewer expressed channels. LEV-10 is 

part of a physical complex with LEV-9 and the L-nAChR localized at the NMJ. In another 

screen for C. elegans mutants weakly resistant to levamisole, oig-4 was identified. It encodes 

the OIG-4 protein that contains a single immunoglobulin domain. OIG-4 interacts with the L-

nAChR/LEV-9/LEV-10 physical complex such that its removal results in a loss of L-nAChR 

clusters mainly by destabilizing the complex (Rapti et al., 2011). 
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Figure 2.7 Caenorhabditis elegans nicotinic acetylcholine receptor diversity. (A) The nAChR 

of C. elegans are put into five groups (colored regions), with a set of 26 subunits not 

belonging to any of these groups put under ‘orphan’ group. (B) The two levamisole-sensitive 

and levamisole-insensitive groups of C. elegans NMJ nAChRs showing the subunits in these 

groups. (C) The modified sequence features in some C. elegans subunits, mainly in the 
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YxCC motif of loop C and the glutamate residue of TM2. Modified from Brown et al. 

(2006); Jones and Sattelle (2004). 

 

Table 2 Characterization of C. elegans nAChR by heterologous expression 

Receptor Pharmacology Reference 

DEG-3/DES-2 Preferentially activated by choline; sensitive to 

dTC and strychnine 

(Treinin et al., 1998; 

Yassin et al., 2001) 

ACR-16 Homomeric channel. Nic is partial agonist; lev, 

butamisole, mor & pyr antagonists. Sensitive to 

DHβE & dTC; poorly sensitive to MLA & BTX. 

Insensitive to oxantel & ivermectin 

(Ballivet et al., 1996; 

Raymond et al., 

2000) 

UNC-38/UNC-

29/LEV-1 

Levamisole is agonist. Sensitive to dTC, Mec, 

neosurugatoxin. Insensitive to BTX 

(Fleming et al., 1997) 

UNC-63/UNC-

29/LEV-1 

Levamisole is agonist. Sensitive to Mec (Culetto et al., 2004) 

UNC-38/ACR-2 Levamisole is agonist. Sensitive to Mec (Squire et al., 1995) 

UNC-38/ACR-3 Levamisole is agonist. Sensitive to dTC & Mec (Baylis et al., 1997) 

 
Modified from Jones and Sattelle (2004) 
Abbreviations: Nic = Nicotine; Lev = Levamisole; Mor = Morantel; Pyr = Pyrantel; DHβE = 
Dihydro-β-erythroidine; dTC = d-tubocurarine; MLA = Methyllcaconitine; BTX = 
Bungarotoxin; Mec = Mecamylamine  
 
 



www.manaraa.com

 36 

2.3.3 Parasitic nematodes AChR 

 
The nAChR of parasitic nematodes differ from the nAChR of C. elegans in their 

electrophysiological properties and subunit compositions. The presence of more than one 

subtype of nAChR, in terms of conductance states and pharmacological differences, has been 

well reported in some parasitic nematodes. Single channel recordings in Ascaris suum by 

Robertson and Martin (1993b) suggested the presence of at least two open states and three 

closed states of the levamisole-activated single-channel currents. Robertson and colleagues 

used the natural anthelmintic paraherquamide and its semisynthetic derivative, 2-deoxy-

paraherquamide to distinguish cholinergic receptor subtypes in A. suum muscle (Robertson et 

al., 2002). They used the antagonist effects of these two compounds on muscle contractions 

elicited by nicotine, levamisole, pyrantel and bephenium to show the subtype selectivity. 

These authors showed that paraherquamide was able to select for a nicotine receptor subtype 

whilst 2-deoxy-paraherquamide selected for a bephenium receptor subtype. 

Similarly, Martin and colleagues used the nAChR agonists methyridine and levamisole to 

show the subtype selectivity of cholinergic agonists and antagonists for nAChR in A. suum 

and O. dentatum (Martin et al., 2003). Methyridine had a selective action on the nicotine 

subtype (N-subtype) of receptors in these two parasites. In these preparations, methyridine 

caused membrane depolarizations, conductance increase and inhibition of larval migration. A 

previous paper reported that methyridine (10 nM – 1 mM) has no effects on chick α7 or C. 

elegans ACR-16 expressed in Xenopus oocytes (Raymond et al., 2000), suggesting that this 

compound has subtype-selective effects. Another demonstration of the presence of different 

pharmacological subytpes of nAChR in A. suum and the selectivity of cholinomimetics was 
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reported by Martin et al. (2004). These authors showed that oxantel was selective for the N-

subtype receptors (nicotine, methyridine) but thenium selectivity was between L- and B-

subtype receptor agonists. Single-channel recordings in A. suum demonstrated the presence 

of three conductance states, G25, G35 and G45 which respectively corresponds to the N-

subtype, the L-subtype and the B-subtype of receptors, figure 2.8 (Qian et al., 2006). 

Further, single-channel recordings of nAChR from O. dentatum demonstrated the presence of 

a heterogenous population of levamisole-sensitive receptors with the conductance states G25, 

G35, G45 and G55 (Martin et al., 1997). Robertson et al. (Robertson et al., 1999) expanded 

on these observations and demonstrated that the conductance states G25, G35, G40 and G45 

are found in the levamisole-sensitive strain of O. dentatum (SENS) but the G35 conductance 

state was absent in the levamisole-resistant strain (LEVR), figure 2.9. In pyrantel-resistant O. 

dentatum, four conductance states of the nicotinic receptors were still observed but the 

percentage of active patches and probability of channel opening (Po) were reduced when 

compared with anthelmintic sensitive worms, figure 2.9 (Robertson et al., 2000). These 

single-channel  records amply demonstrate the heterogeneity of nAChRs in parasitic 

nematodes. 

Indeed, the diversity of levamisole receptors in parasitic nematodes has been reported by 

Neveu et al. (2010) at the genetic level. These authors reported identification of the C. 

elegans homologs of unc-38, unc-29, unc-63 and lev-1 in the trichostrongylid parasites 

Haemonchus contortus, Trichostrongylus colubriformis and Teladorsagia circumcincta. 

Most importantly, they identified up to four paralogs of the unc-29 gene in each 

trichostrongylid parasite, showing the diversity of these receptors in parasitic nematodes. 

These authors also reported the identification of abbreviated transcripts of unc-63 in the 
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resistant isolates of all three trichostrongylid parasites. Reconstitution experiments in 

Xenopus oocytes showed that a levamisole-sensitive nAChR is formed with the H. contortus 

gene products ACR-8, UNC-29, UNC-38 and UNC-63 but ommission of ACR-8 

reconstitutes a pyrantel-sensitive nAChR (Boulin et al., 2011). In A. suum however, only two 

genes, Asu-unc-29 and Asu-unc-38 were used to reconstitute nAChR in oocytes (Williamson 

et al., 2009). Injecting 1:1 ratio of these two genes led to reconstitution of a receptor that 

responded to levamisole, ACh and nicotine and is antagonized by mecamylamine. Varying 

the amount of the two subunit genes injected into the oocytes reconstituted receptors with 

different pharmacologies. 1:5 Asu-unc-38:Asu-unc-29 reconstituted a receptor that responded 

robustly to pyrantel but not to oxantel, a receptor with levamisole as the full agonist and 

nicotine as the partial agonist. When 5:1 Asu-unc-38:Asu-unc-29 was injected, the receptor 

responded robustly to oxantel but not to pyrantel and nicotine was the full agonist whilst 

levamisole was the partial agonist. 
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Figure 2.8 Three subtypes of nicotinic acetylcholine receptors in A. suum revealed by single-

channel records.  

The subtypes N, L and B are preferentially activated by nicotine, levamisole and bephenium 

respectively and correspond to the single-channel conductances 24pS, 35pS and 45pS 

respectively. From Qian et al. (2006). 
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Figure 2.9 Diversity of O. dentatum levamisole receptors revealed by single-channel 

conductances.  

(A) Frequency histogram of levamisole-activated conductance states in SENS worms. (B) 

Frequency histogram of levamisole-activated conductance states in LEVR worms. Note the 

absence of the G35 conductance state in the LEVR worms. (C) Frequency histogram of the 

conductance states in the levamisole-sensitive worms in (A). (D) Frequency histogram of the 

conductance states in pyrantel-resistant worms. From Robertson et al. (1999, 2000). 
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2.4 Voltage-activated calcium-dependent potassium channels 

 
Voltage-activated potassium channels (Kv) are a family of potassium-selective ion channels 

with multiple members. Some members of the voltage-activated K+ channel family have 6 

transmembrane domains (6 TM; S1 – S6) (Kim et al., 1995; Yellen, 2002), such as the small 

conductance and intermediate conductance Ca2+-activated K+ channels. Other members have 

2 TM domains; examples include the inward rectifiers and KATP. The voltage-activated 

calcium-dependent K+ channels have 7 TM domains, an S0 domain in addition to the S1 – S6 

domains of the standard voltage-activated K+ channels. The gene that codes for these 

voltage-activated channels is referred to as KCN (Gutman et al., 2003; 2005). Figure 2.10A 

below illustrates the standard structure of the voltage-dependent K+ channels. 

Elkins et al. (1986) observed that voltage-clamp recordings of currents in the dorsal 

longitudinal flight muscles of mutant Drosophila with the slowpoke (slo) phenotype showed 

the absence of a Ca2+-dependent K+ current. This suggested that the slo gene codes for the 

Ca2+-dependent K+ channel. These channels are thus known as SLO-1, big conductance 

(Dworetzky et al., 1996) or maxi-K channels. They have an unusually large single-channel 

conductance, ~250 – 300 pS and are uniquely different in their requirement for 

depolarization and Ca2+ (Wei et al., 1994a; Kaczorowski et al., 1996). These 7 TM channels 

are distributed in excitable and non-excitable cells and are involved in maintaining the 

membrane potential of cells, tuning of cochlear hair cells, innate immunity, hormone 

secretion, and neurotransmitter release (Ghatta et al., 2006; Salkoff et al., 2006). 

SLO-1/BK channels are homotetrameric or heterotetrameric, composed of four α-subunits 

alone or in association with the regulatory β-subunit (Knaus et al., 1994b). These channels 
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are localized on both the pre- and post-synapse in the nervous system. The regulatory β-

subunit is composed of 2 putative TM domains, TM1 and TM2, connected by a large 

extracellular loop with intracellular N- and C-termini. Four conserved cysteines in the 

extracellular loop form disulfide linkages which induce conformational changes in the α-

subunit that promotes binding of charybdotoxin (Knaus et al., 1994a; Hanner et al., 1998). 

Over four putative β-subunits have been identified, namely β1 from bovine tracheal smooth 

muscle (Garcia-Calvo et al., 1994; Knaus et al., 1994b), β2 from rat chromaffin cells 

(Wallner et al., 1999), β3 from testis (Brenner et al., 2000), rat insulinoma tumor cells and 

adrenal chromaffin cells (Xia et al., 1999), and β4 from brain (Brenner et al., 2000; Meera et 

al., 2000a). These β-subunits in different tissues regulate the properties of the α-subunits to 

meet the needs of the cells; these regulations include altering the pharmacological properties 

(McManus et al., 1995; Dworetzky et al., 1996), voltage dependence and gating of the 

channel (Brenner et al., 2000; Weiger et al., 2000; Ha et al., 2004), and the channels 

apparent calcium sensitivity (Wallner et al., 1995). The human BK channel β-subunit gene is 

designated KCNMB1. 

The α-subunit is made up of a core and a tail; the 7 TM domains and intracellular domains S7 

and S8 make up the core whilst intracellular domains S9 and S10 make up the tail (Magleby, 

2003). A nonconserved linker connects the core and tail regions (Wei et al., 1994b). Both 

core and tail domains are separable and can be expressed independent of each other to form 

functional channels in Xenopus oocytes. The tail region contains the highly conserved 

aspartate residues forming the ‘Ca2+ bowl’ between S9 – S10 intracellular domains. In 

addition to the ‘Ca2+ bowl’ that confers the Ca2+ sensitivity to these channels, it has been 

demonstrated that Ca2+ can bind to other regions, such as the regulator of conductance for K+  
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(Ludwig et al., 1999) between S7 and S8 (Xia et al., 2002). The Ca2+ for channel activation 

comes from either extracellular sources through voltage-activated Ca2+ channels or from 

intracellular stores, such as IP3 signaling pathway. Beside the ‘Ca2+ bowl’ at the C-terminus, 

there are other regulatory sites like leucines zipper domains for protein kinase A associations 

(Tian et al., 2003), phosphorylation sites for protein kinase C, tyrosine kinase (Wang et al., 

1999a; Ling et al., 2000), cAMP- and cGMP-dependent protein kinases (Schubert and 

Nelson, 2001; Zhou et al., 2001; Ghatta et al., 2006). 

Site-directed mutagenesis experiments suggest that arginine residues at every third position 

in the S4 domain confer voltage sensitivity to the channel (Papazian et al., 1991). Other 

reports suggest that the voltage sensitivity is also conferred by acidic residues in the S2 (Seoh 

et al., 1996) and S3 domains (Papazian et al., 1995; Ma et al., 2006). Residues like D153, 

E293, and R167 in the S2 domain and D186 in the S3 domain contribute to the voltage 

sensitivity of these channels. Located between S5 and S6 domains is the P-loop. This P-loop 

together with the S5 and S6 domains constitute the pore-forming motif. The receptors for the 

BK channel pore blockers iberiotoxin and charybdotoxin is in the P-loop (Ghatta et al., 

2006). The channel pore opens in response to depolarizations that causes displacement of the 

charged residues in the S4 domain (Stefani et al., 1997; Horrigan and Aldrich, 2002). 

In the nematode C. elegans, slo-1 is expressed in body wall muscles and motorneurones 

(Wang et al., 2001; Carre-Pierrat et al., 2006). Two splice variants, slo-1b and slo-1c, that 

arise from alternative splicing have been identified in this model free-living nematode. The 

gene(s) that encode the mammalian BK channel β-subunit orthologue have not been 

identified in C. elegans or in any other nematode (Holden-Dye et al., 2007). C. elegans SLO-

1 is involved in locomotion, feeding and reproduction. C. elegans slo-1 loss of function 



www.manaraa.com

 44 

mutants has a jerky movement with increased reversals when compared to wild-type animals 

(Wang et al., 2001; Guest et al., 2007). SLO-1 in these nematodes appears to have an 

inhibitory role on neurotransmission. The presence of tetraethylammonium (TEA) and 4-

aminopyridine (4-AP) sensitive potassium channels in A. suum was demonstrated by Martin 

et al. (1992). Subsequently, Verma et al. (2009) reported that these voltage-activated K+ 

currents were Ca2+-dependent, demonstrating the presence of SLO-1/BK channels in A. 

suum. 
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Figure 2.10 Schematic representation of the structure of voltage-activated K+ channels.  

(A) The standard voltage-activated K+ channels have 6 TM domains, S1 – S6, and 

intracellular NH2 and COOH termini. (B) The voltage-activated Ca2+-dependent K+ channels 

have an S0 domain in addition to the 6 TM domains, a large intracellular C-loop, an 

extracellular N-termini and/or a regulatory β-subunit. From Salkoff et al. (2006) and Ghatta 

et al. (2006). 

 



www.manaraa.com

 46 

2.5 Anthelmintics and anthelmintic resistance 

 
Most of the currently marketed anthelmintics act on the neurons and muscles of nematodes. 

The ion channels in these nematodes are attractive targets for these anthelmintics because of 

the quick onset of effects and the relatively selective action on the parasites (Wolstenholme, 

2011). Some important differences between these ion channels in the parasites and the 

vertebrate hosts partly accounts for the selective effects of these anthelmintics. These 

anthelmintics are the main bastions of defense in the treatment of parasitic nematode 

infections.  

 

2.5.1 Emodepside 

 
Whilst screening for new anthelmintics with the poultry parasitic nematode Ascaridia galli as 

a test organism, Sasaki et al. (1992) discovered the cyclooctadepsipeptide PF1022A. This 

cyclooctadepsipeptide is isolated from the cultured fungus Mycelia sterilia that grows on the 

leaves of the shrub Camellia japonica. This shrub grows mainly in Japan and is sometimes 

known as the rose of winter; figure 2.11A. PF1022A is a neutral, colorless compound with 

the molecular formula C52H76N4O12 that melts between 104 – 106oC. IR spectra of PF1022A 

showed the presence of amide and ester functions, figure 2.11B. It consists of two D-phenyl 

lactic acids, two D-lactic acids and four N-methyl-L-leucines in L-D-L configuration of 

cyclic octadepsipeptide (Harder et al., 2005). At 2 mg/kg, PF1022A was effective against 

Ascaridia galli without exhibiting any toxic effects in the hosts. Additionally, no acute 

toxicity effects were observed when 1 g/Kg or 2 g/Kg (po) PF1022A was administered to 
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mice. It showed no activity against yeasts, fungi, Gram-positive and Gram-negative bacteria 

when tested at 100 µg/ml. Conder et al. (1995) observed that PF1022A was more potent at 

inhibiting motility of Haemonchus contortus than albendazole (a benzimidazole), ivermectin 

(a macrocyclic lactone) and levamisole (a cholinomimetic). Measurement of ATP levels 

indicated PF1022A inhibited H. contortus motility without causing parasite death. In addition 

to H. contortus, PF1022A showed activity against Ostertagia ostertagi and Trichostrongylus 

colubriformis, (Conder et al., 1995), Heligmosomoides polygyrus, Trichinella spiralis, 

Heterakis spumosa, and Nippostrongylus brasiliensis (Martin et al., 1996a). Administration 

of PF1022A by routes other than oral (that is, parenteral) reduced its efficacy against O. 

ostertagi and T. colubriformis. PF1022A did not antagonize levamisole effects in current-

clamp recordings in Ascaris suum, suggesting PF1022A may not exert its effects on nicotinic 

acetylcholine receptors.  

To overcome the reduced activity when PF1022A was administered parenterally rather than 

orally and to increase other pharmacokinetic properties, two morpholine rings were attached 

to PF1022A at the phenyllactic acid position to synthesize emodepside (Bay 44-4400). 

Emodepside is therefore a semisynthetic derivative of PF1022A, figure 2.11C. Emodepside is 

currently available on the market as a formulation with praziquantel (Profender®) and 

toltrazuril (Procox®) for use in cats and dogs to treat parasitic helminthes, figure 2.11D. 

According to von Samson-Himmelstjerna et al. (2005), both PF1022A and emodepside are 

effective against benzimidazole-, ivermectin- and levamisole-resistant H. contortus in sheep 

and against ivermectin-resistant Cooperia oncophora in cattle, demonstrating the ‘resistance-

overcoming’ property of both cyclooctadepsipeptides. Both cyclooctadepsipeptides were 

effective at reducing fecal egg counts and/or worm counts in both populations of parasites. 
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Schurmann et al. (2007) further demonstrated the inhibitory effects of emodepside and 

PF1022A on egg hatching and larval motility of several species of parasitic nematodes. In the 

free-living nonparasitic nematode, Caenorhabditis elegans, emodepside has been 

demonstrated to inhibit egg-laying, locomotion, and feeding by paralyzing body wall muscles 

and pharyngeal muscles (Harder et al., 2003; Willson et al., 2004; Bull et al., 2007). In 

Ascaris suum, emodepside caused a calcium-dependent membrane hyperpolarization, muscle 

relaxation, and inhibition of muscle contraction elicited by ACh and AF2 (Willson et al., 

2003). Furthermore, emodepside has shown promise as an alternative drug for treating 

Onchocerciasis (Hudson and Nwaka, 2007; Boussinesq, 2008). 

Available evidence suggests that the cyclooctadepsipeptides PF1022A and emodepside do 

not act at the same target site as the mainstay anthelmintics. Early investigation into the 

target site for PF1022A by Saeger et al. (2001) led to the identification of a Haemonchus 

contortus 3539 bp cDNA that encodes an orphan heptahelical transmembrane 110 kDa-

receptor. The receptor, HC110-R is bound at the extracellular N-terminal side by alpha-

latrotoxin, causing Ca2+ influx through Ca2+ channels. Alpha latrotoxin is the ligand of the 

latrophilin receptor. PF1022A binding to the N-terminal region of this receptor antagonizes 

latrotoxin signaling. Welz et al. (2005) reported identification of homologs of HC110-R in 

Cooperia onchophora and Ostertagia ostertagi  which these authors termed depsiphilins. 

These depsiphilins and HC110-R are putative G protein-coupled receptors (GPCR) related to 

the mammalian latrophilin receptor. According to Willson et al. (2004), emodepside causes 

paralysis of the pharynx of C. elegans primarily by targeting neuronal latrophilin-like 

receptors (lat-1). Worms with a lat-1 gene knock-out were found to be resistant to 
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emodepside. These authors also reported that pharynxes of worms with reduction or loss-of-

function mutation in Gq, UNC-13 and phospholipase C-β (PLC-β) are resistant to 

emodepside. A latrophilin-like receptor in nematodes therefore appears to be an effector for 

emodepside and PF1022A (Harder et al., 2003). Binding of emodepside to a presynaptic 

latrophilin-like receptor may result in activation of Gqα and PLC-β. Diacylglyerol (DAG), a 

cleavage product of PLC-β action activates UNC-13 and synaptobrevin, leading to the 

release of a neurotransmitter that exerts its effects at the post-synaptic terminal (Harder et al., 

2005). 

However, Guest et al. (2007) observed that whilst a C. elegans lat-1 null mutant is less 

sensitive to the inhibitory effects of emodepside on the pharynx, it was sensitive to the 

inhibitory effects of emodepside on locomotion. This led to the search for another effector or 

target molecule for emodepside. These authors reported recovery of nine alleles of a Ca2+-

activated K+ channel gene, slo-1. Mutants of the slo-1 were resistant to the inhibitory effects 

of emodepside on locomotion and pharyngeal pumping, strongly suggesting that the Ca2+-

activated K+ channel is another and perhaps the main effector of emodepside effects. 
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Figure 2.11 The Cyclooctadepsipeptide, PF1022A and the semisynthetic analog, emodepside. 

(A) Camellia japonica, the ‘winter rose’ shrub on which grows Mycelia sterilia from which 

PF1022A was extracted. Accessed from Missouri Botanical Garden, 

www.missouribotanicalgarden.org/gardens-gardening/your-garden/plant-finder/plant-

details/kc/b546/camellia-japonica.aspx on 02-10-12 at 2:55pm CST. (B) Structure of 

PF1022A, the parent compound for emodepside. From Sasaki et al. (1992). (C) Structure of 

emodepside, showing the two morpholine rings attached at the phenyllactic acid positions of 

PF1022A. Accessed from Bayer HealthCare:Science for a better life, 

www.animalhealth.bayerhealthcare.com/3519.0.html?&tx_bahprdmx_pi[showUid]=81&cHa

sh=44b75885b7 on 02-09-12 at 3:00pm CST. (D) Profender ® and Procox ®, emodepside 

http://www.missouribotanicalgarden.org/gardens-gardening/your-garden/plant-finder/plant-details/kc/b546/camellia-japonica.aspx%20on%2002-10-12
http://www.missouribotanicalgarden.org/gardens-gardening/your-garden/plant-finder/plant-details/kc/b546/camellia-japonica.aspx%20on%2002-10-12
http://www.animalhealth.bayerhealthcare.com/3519.0.html?&tx_bahprdmx_pi%5bshowUid%5d=81&cHash=44b75885b7
http://www.animalhealth.bayerhealthcare.com/3519.0.html?&tx_bahprdmx_pi%5bshowUid%5d=81&cHash=44b75885b7
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formulations approved for use in cats and dogs, respectively. Accessed on VET-

MAGAZIN.de at 3:00pm CST on 02-09-12. 

         

2.5.2 Levamisole, pyrantel, tribendimidine 

 
Levamisole, pyrantel and tribendimidine are anthelmintics that act as agonists of the nicotinic 

receptors located on parasitic nematode somatic muscles (Harrow and Gration, 1985b; 

Martin, 1997; Martin and Robertson, 2007). Levamisole was introduced in the 1960s to treat 

parasitic nematode infections in humans and livestock animals. Levamisole is effective in 

treating Ascariasis in children (Lionel et al., 1969). It is the L-isomer of tetramisole, a 

synthetic compound. According to Aceves et al. (1970), tetramisole paralyzes live Ascaris in 

3 min, causes sustained contraction of and depolarizes Ascaris somatic muscle. Pyrantel is 

used to treat roundworms, pinworms, and hookworms. Levamisole is an imidazothiazole 

whilst pyrantel is a tetrahydropyrimidine.  

Both of these anthelmintics increases the input conductance and depolarizes A. suum muscle 

bags. Dose-conductance relationships suggested that pyrantel is more potent than levamisole 

(Harrow and Gration, 1985b). The reversal potential determined for pyrantel and levamisole 

were similar to the reversal potential for ACh, suggesting that both anthelmintics acted on the 

same cation channels as ACh. Levamisole and pyrantel act on synaptic and extrasynaptic 

nicotinic acetylcholine receptors. Because these drugs are not degraded by acetyl 

cholinesterase, they cause spastic paralysis of the parasitic worm. Levamisole and pyrantel 

are open-channel blockers at high concentrations and hyperpolarized potentials (Robertson 

and Martin, 1993a; Robertson et al., 1994). Contraction assays and larval migration studies 
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suggest that levamisole and pyrantel are selective for the L-type receptor (Robertson et al., 

2002; Martin et al., 2003). 

According to Hu et al. (2009), tribendimidine also acts on the L-type acetylcholine receptor. 

Tribendimidine was developed by the Chinese National Institute of Parasitic Diseases in the 

1980s and is already approved for human use (Xiao et al., 2005). Laboratory studies have 

demonstrated the broad-spectrum anthelmintic efficacy of tribendimidine (Li et al., 2011; 

Sripa and Hong, 2011; Tritten et al., 2012). 

 

 

Figure 2.12 Chemical structures of levamisole (A), pyrantel (B) and tribendimidine (C). 

From Hu et al. (2009) and Martin & Robertson (2007). 
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2.5.3 Anthelmintic resistance 

 
Resistance to drugs is a not a new phenomenon. Generally, a reduction in the effectiveness of 

a drug to cure a disease or kill parasites is referred to as drug resistance. According to 

Sangster and Gill (1999) and Prichard  et al. (1980), anthelmintic resistance develops when 

more individuals in a parasite population that were hitherto affected by a given drug 

dose/concentration become unaffected or when there is a decline in the efficiency of a drug 

against a hitherto susceptible parasite population. This definition does not however suggest 

what causes the decline in the efficiency of a drug. An alternative definition of anthelmintic 

resistance that points to an origin states that anthelmintic resistance is “the genetically 

transmitted loss of sensitivity in worm populations that were previously sensitive to the same 

drug” (Köhler, 2001). This definition underscores the importance of genetics to drug 

resistance. Resistance to the anthelmintics used to treat parasitic helminth infections in 

livestock and companion animals is a well-documented problem. There are also reports of 

anthelmintic resistance in some human parasitic helminthes. For example, there are reports of 

praziquantel resistance in human Schistosomes (Cioli et al., 1995; Liang et al., 2000) and 

tetrahydropyrimidine resistance in human hookworms (Reynoldson et al., 1997). Resistance 

to most of these anthelmintics was reported as early as 3 – 10 years after their introduction. 

Figure 2.13 below illustrates the time after introduction of some anthelmintics till the first 

report of resistance. For example, resistance to thiabendazole, a benzimidazole was reported 

in 1964, about 3 years after its introduction. Because anthelmintic resistance is an economic 
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problem of tremendous importance, detecting resistance at the early stage is necessary in 

preventing an “endemic” problem. Usually, the first sign of resistance is treatment failure. 

According to Wolstenholme et al. (2004), anthelmintic resistance arises through a limited 

number of ways, namely: (i) drug target modification; (ii) increase or change in drug 

metabolism, resulting in inactivation, removal or prevention of drug activation;  modification 

in drug distribution, reducing accessibility to target tissues; and/or (iv) target gene 

amplification in order to overcome drug action. Receptor loss or decrease in target site 

affinity for anthelmintics appears to be major mechanisms helminthes use to acquire 

resistance (Köhler, 2001). Worth noting here is the distinction between drug resistance and 

intrinsic variations in drug sensitivity that is the result of: (i) variation in sensitivity at 

different stages of the parasites life cycle; (ii) variation in drug sensitivity between male and 

female parasites; variation in sensitivity by the same parasite species in different hosts; and 

(iv) variation in sensitivity between different species of a parasite (Sangster and Gill, 1999).  

There are biochemical and electrophysiological basis for anthelmintic resistance. Some 

Single Nucleotide Polymorphisms (SNP) has been associated with anthelmintic resistance. A 

single nucleotide change usually leads to a change in the amino acid of the target site protein 

that alters the drug affinity. An example of SNP is found in benzimidazole (BZ) resistance. 

In Haemonchus contortus, Teladorsagia circumcincta, Trichostrogylus colubriformis and 

cyathostomins from horses, phenylalanine – tyrosine polymorphism at codon 167 of β-

tubulin isotype 1 (F167Y) reduces affinity for BZ. Phenylalanine – tyrosine polymorphism at 

codon 167 of β-tubulin isotype 2 and at codon 200 of β-tubulin isotype 2 (F200Y) also 

reduces affinity for BZ in H. contortus (Kwa et al., 1994; Prichard, 2001; Silvestre and 

Cabaret, 2002). Increase in transport proteins that increases efflux of anthelmintics also lead 
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to resistance. P-glycoprotein (Pgp), a large, 170 kDa integral membrane protein that belongs 

to the ATP-binding cassette (ABC) transporter superfamily has been associated with 

multidrug resistance (MDR) in humans (Zhou, 2008) and helminthes (Blackhall et al., 1998; 

Xu et al., 1998; Sangster et al., 1999; Le Jambre et al., 2000; Kerboeuf et al., 2003). Several 

Pgps have been linked to BZ resistance in H. contortus.  

Changes in the electrophysiological properties of nAChRs and mutations in nAChR subunit 

genes have been associated with resistance to levamisole and pyrantel. Robertson et al. 

(1999) demonstrated although levamisole-sensitive (SENS) and levamisole-resistant (LEVR) 

strains of O. dentatum contained the same number of receptors in muscle patches, the LEVR 

strain contained lower active patches. Furthermore, the mean open time for these channels 

and the probability of channel opening were reduced in the LEVR patches. Another striking 

distinguishing feature was the absence of one of the channel conductance states in the LEVR 

worms. In a related study, it was demonstrated that pyrantel-resistant O. dentatum had 

reduced probability of channel opening and percentage of active patches when compared 

with drug sensitive worms (Robertson et al., 2000). These results demonstrate that these 

parasites can change their receptor populations and/or properties to reduce the response to 

cholinergic anthelmintics. Indeed, a loss in nicotinic receptor aggregation due to mutation in 

lev-10 plays a role in levamisole resistance (Qian et al., 2008). 
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Table 3 Examples of resistance mechanisms to the mainstay anthelmintic classes 

Anthelmintic family Resistance mechanism Examples of parasites 
Benzimidazoles β-tubulin isotype 1 

mutations: F200Y, F167Y 
 
β-tubulin isotype 2 
mutations: F200Y, F167Y, 
deletion. Altered metabolism 
and or uptake. 

H. contortus, T. 
colubriformis, T. 
circumcincta, Fasciola 
hepatica 

Avermectins and 
milbemycins 

Mutations in GluCl and/or 
GABA-R genes. 
Overexpression of P-
glycoproteins 

Oesophagostomum spp, 
sheep & cattle 
trichostrongyloids 

nAChR agonists Changes in nicotinic 
acetylcholine receptors 

H. contortus, O, dentatum, 
small strongyles of horses 

 
  Modified from Wolstenholme et al (2004) and Sangster & Gill (1999) 

 

 

 

Figure 2.13 Timeline of introduction to first report of anthelmintic resistance.  

From James et al. (2009) 
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2.6 Heterologous expression systems: Xenopus laevis oocytes 

 
Heterologous (another ‘organism’) expression is the identification and expression of genes 

(DNA) in hosts/organisms different from the source of the genetic material. Heterologous 

expression has been used for a long time to study proteins and characterize ion channels and 

receptors. There are different types of expression systems, from yeast, Escherichia coli, and 

mammalian cell lines to Xenopus laevis oocytes. Certain factors determine the choice of an 

expression system, principal among them is the outcome of a study; whether the outcome is 

production of large quantities of protein or characterization of a receptor in the plasma 

membrane (Yesilirmak and Sayers, 2009). One of the most widely used expression systems 

is Xenopus laevis oocytes. Xenopus laevis oocytes have 6 growth stages, stages I to VI 

(Dumont, 1972). These oocytes are stored in the frog abdominal membrane with connective 

tissues, follicular cells and blood vessels. All growth stages of the oocytes are found in the 

ovary at any time. The size of oocytes at the different growth stages is a distinguishing factor, 

as well as the level of pigmentation (Weber, 1999). The stage V or VI oocytes are 1 to 1.2 

mm in diameter with a clear difference between the dark animal pole and the white, non-

pigmented vegetal pole. Stage V and VI oocytes are used for most electrophysiological 

studies but to study currents with fast kinetics, the smaller stage IV oocytes are preferable. 

The shape of oocytes is maintained by the vitelline membrane, which surrounds the plasma 

membrane. The vitelline membrane is devoid of ion channels and therefore does not affect 

electrophysiological experiments. However, it must be removed before patch-clamp 

recordings of oocytes because it prevents the formation of high resistance gigaseal between 

the oocyte and patch electrode. On the other hand, the follicular layer which surrounds the 
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vitelline membrane expresses ion channels, transporters (Miledi and Woodland, 1989a, 

1989b) and is coupled to the oocytes by gap junctions (Browne and Werner, 1984). This 

must therefore be removed before conducting electrophysiological recordings. 

The first observation that foreign RNA injected into oocytes from the South African frog, 

Xenopus laevis, can be translated into proteins was made by Gurdon and colleagues (1971). 

X. laevis oocytes are probably the simplest system for expressing receptors/ion channels 

(Buckingham et al., 2006). Early studies that used X. laevis oocytes dealt with proteins like 

globin, interferon and viral proteins that are of little interest to electrophysiologists (Laskey 

et al., 1972; Laskey and Gurdon, 1973; Gurdon et al., 1974; Laskey and Gurdon, 1974; 

Woodland et al., 1974). The first use of oocytes for expression of receptors and ion channels 

can be traced to the 1980s when these oocytes were used to express acetylcholine receptors, 

serotonin receptors and GABA receptors (Miledi et al., 1982a, 1982b; Gundersen et al., 

1983; Miledi et al., 1983). Following these earlier studies, oocytes from the South African 

clawed-frog have been used to express and study different ligand-gated ion channels (LGIC). 

These oocytes are a very convenient expression system for LGIC following mRNA injection 

and for studying the effects of candidate ligands or drugs. Oocytes can efficiently translate 

exogenous mRNA microinjected into them because they contain stores of enzymes, 

organelles and proteins normally used after fertilization (Gurdon et al., 1971; Gurdon, 1973; 

Gurdon et al., 1973). The large size of these oocytes makes microinjection of complementary 

RNA or DNA and subsequent electrophysiological recordings relatively easy. Injection of 

cDNA into oocytes is technically more difficult because it requires locating the nucleus and 

the risk of damaging the nuclear membrane during microinjection is a concern. Different 

electrophysiological techniques can be employed to record from X. laevis oocytes but the 
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most commonly used and simplest method is perhaps the two-electrode voltage-clamp 

(Stuhmer and Parekh, 1995). Beside these, other advantages like the fact that X. laevis is a 

low-cost laboratory animal easily maintained in captivity and the possible simultaneous 

injection of different cRNAs or cDNAs makes them even more attractive as expression 

systems for studying ion channels and receptors.  

 As an expression system, Xenopus oocytes are not without their limitations. Xenopus 

oocytes are best kept at 19oC or 20oC, although they can be kept at lower temperatures (like 

4oC) but not at higher temperatures because they die quickly. This limitation must be 

considered when using these oocytes to study temperature-sensitive mutant proteins. 

Xenopus oocytes endogenously express a number of anionic and cationic channels, such as 

Ca2+-activated Cl- channels (Gomez-Hernandez et al., 1997; Callamaras and Parker, 2000), 

K+ channels (Lu et al., 1990; Parker and Ivorra, 1990; Brochiero et al., 2001), Na+ channels 

(Krafte and Volberg, 1992; Bossie et al., 1998), non-selective cation channels (Ludwig et al., 

1999), and last but not least, hyperpolarization-activated Cl- channels. These endogenous ion 

channels may interfere with the expression and studies of certain ion channels or proteins 

either by being upregulated by the expression of exogenous proteins or by forming 

heteromultimers with exogenous proteins expressed by the oocytes. Reports of seasonal 

variations in the quality of oocytes (Lafaire and Schwarz, 1986), a phenomenon that we have 

also observed in our laboratory, plus seasonal variation in the membrane potential of oocytes 

(Sigel, 1990) must be considered when performing experiments with this expression system. 

 



www.manaraa.com

 60 

 

 

Figure 2.14 Structure of Xenopus laevis oocyte.  

Right: defolliculated single oocyte, left: diagram showing the two poles, vitelline membrane 

and folliulcar layer of X. laevis oocytes. Modified from (Bianchi and Driscoll, 2006).  
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CHAPTER 3 On the mode of action of emodepside: slow effects on membrane 

potential and voltage-activated currents in Ascaris suum 

Modified from paper published in the British Journal of Pharmacology (2011) 

SK Buxton2, 4, C Neveu3, 4, CL Charvet3, 4, AP Robertson4 & RJ Martin4, 5 

3.1 Abstract 

 
Anthelmintics are required for treatment and prophylaxis of nematode parasites of humans 

and domestic animals. Emodepside, a cyclooctadepsipeptide, is a modern anthelmintic that 

has a novel mode of action involving a Ca2+-activated K+ channel (SLO-1) in Caenorhabditis 

elegans, sometimes mediated by a latrophilin (LAT) receptor. We examined mechanisms of 

action of emodepside in a parasitic nematode, Ascaris suum. RT-PCR was used to investigate 

expression of slo-1 and lat-1 in A. suum muscle flaps, and two-micropipette current-clamp 

and voltage-clamp techniques were used to record electrophysiological effects of 

emodepside. Expression of slo-1 and lat-1 were detected. Emodepside produced a slow time-

dependent (20 min), 4-aminopyridine sensitive, concentration-dependent hyperpolarization 

and increase in voltage-activated K+ currents. Sodium nitroprusside increased the 

hyperpolarizations and K+ currents. N-nitro-L-arginine inhibited the hyperpolarizations and 

K+ currents. Phorbol-12-myristate-13 acetate increased the K+ currents, while staurosporine 

inhibited the hyperpolarizations and K+ currents. Iberiotoxin reduced these emodepside K+ 

currents. The effect of emodepside was reduced in Ca2+-free solutions. Emodepside had no 

effect on voltage-activated Ca2+ currents. Asu-slo-1 and Asu-lat-1 are expressed in adult A. 

suum muscle flaps and emodepside produces slow activation of voltage-activated Ca2+-

dependent SLO-1-like K+ channels. The effect of emodepside was enhanced by stimulation 
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of protein kinase C and NO pathways. The data are consistent with a model in which NO, 

PKC and emodepside signaling pathways are separate and converge on the K+ channels, or in 

which emodepside activates NO and PKC signaling pathways to increase opening of the K+ 

channels. 

1 Reprinted with permission of British Journal of Pharmacology (2011), 164, 453-470 
2 Graduate student and primary researcher 
3 Assisted with the molecular biology aspect 
4 Contributed equally in writing the manuscript 
5 Corresponding author and Professor, Dept. Biomedical Sciences, Iowa State University 
 

3.2 Introduction 

 
Parasitic nematode infections, classed as neglected tropical diseases, remain a problem in 

both human and veterinary medicine. The estimated global prevalence of parasitic nematode 

infections in humans is over two billion and the global prevalence of ascariasis alone is over 

800 million (Hotez et al., 2007; 2008). These parasites are debilitating to humans, causing 

lost work days, cognitive impairment and poor growth; they also depress agricultural 

production and food supply. Ascariasis is caused by Ascaris lumbricoides in humans: this 

parasite is nearly identical to the parasite, Ascaris suum of pigs which is a good model of the 

human parasite A. lumbricoides. In the absence of effective vaccines and adequate hygiene, 

anthelmintic drugs are used for treatment and prophylaxis.  However, there have been reports 

of growing resistance to the classic anthelmintic drugs: benzimidazoles (albendazole), 

nicotinic agonists (levamisole/pyrantel) and macrocyclic lactones (ivermectin) (Prichard, 

1990; 1994; Sangster and Gill, 1999; Sangster, 2001; Kaplan, 2002; Wolstenholme et al., 

2004; Martin and Robertson, 2007; James et al., 2009). More recently, novel ‘resistance-

busting’ anthelmintics (emodepside, a cyclooctadepsipeptide; monepantel, an amino-
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acetonitrile derivative, and derquantel, a paraherquamide derivative) have been released onto 

the market. The need for the new anthelmintics and ways to combat resistance to the 

currently available anthelmintics cannot be overstated. 

Sasaki et al. (1992) reported the isolation of the cyclooctadepsipeptide PF1022A from 

cultured Mycelia sterilia, a fungus found on the leaves of Camellia japonica. Emodepside is 

a semisynthetic analogue of PF1022A made by attaching two morpholine rings at the para 

position of the two phenyllactic acids (Harder et al., 2005) in order to enhance 

pharmacokinetic properties. Both emodepside and PF1022A have been shown to be effective 

against benzimidazole-, levamisole- and ivermectin-resistant nematode parasite isolates 

(Samson-Himmelstjerna von et al., 2005), and to be effective against a wide range of 

nematode parasites (Schurmann et al., 2007). 

Wilson et al. (2003) reported that in A. suum, emodepside caused muscle relaxation and a 4-

aminopyridine sensitive, calcium-dependent hyperpolarization of body wall muscle cells. 

The similarity of this response to that of the inhibitory neuropeptides PF1/PF2 led to the 

suggestion that emodepside may be acting at the neuromuscular junction to release an 

inhibitory neuropeptide with similar action to the neuropeptide PF1/PF2.  

Two molecular effectors have been implicated in the mode of action of emodepside. The 

first, a latrophilin-like receptor, HC110-R, co-precipitated with PF1022A and was cloned 

from Haemonchus contortus (Saeger et al., 2001). Here it is interesting to note that 

FMRFamide-like neuropeptides like PF2 have been tested and found to act as ligands of 

HC110-R (Muhlfeld et al., 2009). However observations using latrophilin gene knockouts in 

C. elegans, found that emodepside still depressed locomotion but that in the pharyngeal 

muscle inhibitory effects were reduced (Willson et al., 2003; Guest et al., 2007). The 
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observations suggest that a latrophilin receptor is involved in the response to emodepside in 

the pharyngeal feeding circuit, but that other molecular effectors are also involved in the 

inhibition of locomotion. The second emodepside effector was identified in mutagenesis 

screens in C. elegans. These delivered multiple alleles of the voltage-gated calcium-sensitive 

potassium channel gene, slo-1, such that slo-1 loss-of-function mutants were discovered to be 

resistant to the pleiotropic effects of emodepside on reproduction, locomotion and feeding.   

Effects of emodepside on the voltage-activated currents in a parasitic nematode have not 

been studied. Here, we find evidence of the expression of SLO-1 and LAT-1; we use current- 

and voltage-clamp electrophysiological techniques to investigate the mode of action of 

emodepside on membrane potential and voltage-activated currents in Ascaris suum as an 

example of a parasitic nematode. We find that emodepside activates K currents with SLO-1-

like properties with effects being enhanced by PKC and NO signaling pathways. 

 

3.3 Materials and Methods 

 

3.3.1 Collection and Maintenance of worms 

 
A. suum were collected weekly from Tyson Foods Inc. pork packing plant, Flindt Drive, 

Storm Lake, IA and from JBS Swift and Co. pork processing plant, Marshalltown, IA, USA. 

The adult worms were kept in Locke’s solution (NaCl 155 mM, KCl 5 mM, CaCl2 2 mM, 

NaHCO3 1.5 mM, glucose 5 mM) at 32oC. The solution was changed twice a day and the 

worms were used within 4 days of collection. 
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3.3.2 Sequence and gene expression analysis 

 
Database searches were performed with the BLAST Network Service (NCBI), using the 

tBLASTn algorithm (Altschul et al., 1997). Signal peptide predictions were carried out using 

the Signal P 3.0 server (Bendtsen et al., 2004). Conserved protein domains as well as 

membrane-spanning regions were predicted using the SMART program (Schultz et al., 

1998). Total RNA was prepared from body muscle flaps (see below) from A. suum adult 

worms using Trizol reagent (Invitrogen) by following the manufacturer’s recommendations. 

RNA pellets were dissolved in 100 µl of RNAsecure resuspension solution (Ambion) and 

were DNase treated with the TURBO DNA-free kit (Ambion). The RNA concentration was 

measured using a nanodrop spectrophotometer (Thermo Scientific, Waltham, Massachusetts, 

USA). First strand cDNA synthesis was performed on 5 µg of total RNA using the oligo (dT) 

RACER primer (Invitrogen) and the superscript III reverse transcriptase (Invitrogen) 

according to the manufacturer’s instructions. Reverse transcription-PCR experiments were 

carried out on first strand cDNA using two rounds of nested PCR, in a final volume of 20 μl, 

containing 200 ng of first-strand cDNA (or 1 µl of 1/100 dilution of amplification product 

from the first round of PCR), 1U of GoTaq polymerase (Promega), 0.25mmol/l dNTPs each 

and 0.3 µmol/l of each primer. Primer sequences used for RT-PCR experiments are provided 

in supplemental table 1. The reaction mixture was denatured by heating at 94°C for 5 min, 

followed by 33 cycles at 94°C for 45 s, 56°C for 45 s and 72°C for 45 s. A final extension 

step was performed at 72°C for 5 min. Amplification products were cloned in pGEM vector 

(Promega) and sequenced by GATC biotech (Konstanz, Germany). 
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3.3.3 Somatic muscle preparation 

 
The anterior portion of the worm about 4 cm away from the head was used in all recordings. 

About 1 cm of this part of the worm was cut-out and the resulting cylindrical worm piece 

was cut open along a lateral line to form a muscle flap. The gut was removed to expose the 

muscle cells and the muscle flap was pinned onto a 35 x 10 mm Petri-dish lined with Sylgard 

and containing the perfusion solution. The preparation was placed in the experimental 

chamber and perfused with low-potassium Ascaris Perienteric Fluid (APF-ringer) solution (in 

mM: NaCl 23, Na acetate 110, KCl 3, CaCl2 6, MgCl2 5, Glucose 11, HEPES 5, pH adjusted 

to 7.6 with NaOH), unless otherwise stated, at a rate of 4 ml/min through a 20 gauge needle. 

The needle was placed directly above the muscle bag being recorded from. The preparation 

in the experimental chamber was kept at 34oC by using a Warner heating collar (DH 35) and 

heating the perfusate with a Warner SH-27B inline heater (Hamden, CT, USA).  

 

3.3.4 Electrophysiology of Somatic Muscle 

 
Two micropipette voltage- and current-clamp techniques were used in examining the 

electrophysiological effects of emodepside on the muscle bag of A. suum (Figure 3.0A). The 

micropipettes, made of Borosilicate capillary glass with internal diameter 0.86 mm and 

external diameter 1.50 mm (Harvard Apparatus, Holliston, MA, USA) were pulled on a 

Flaming Brown micropipette puller (Sutter Instrument Co, Novato, CA, USA). The 

micropipettes were filled with 3 M potassium acetate to study the membrane potential and 

potassium current effects. The current-clamp and the voltage-sensing micropipettes had 
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resistances of 20 – 30 MΩ but the tip of the current-injecting micropipette for the voltage-

clamp was broken to have resistance of 3 – 6 MΩ. The muscle bag was impaled with both 

micropipettes for all recordings. Axoclamp 2B amplifier, a 1320A Digidata interface and 

pCLAMP 8.2 software (Molecular Devices, Sunnyvale, CA, USA) were used in all 

recordings. In all current- and voltage-clamp recordings, the experiment sets were repeated 

on different worms to obtain the desired number of observations.   In the current-clamp 

experiments, 40 nA hyperpolarizing pulses were injected for 500 ms at 0.30 Hz through the 

current-injecting micropipette and the change in membrane potential recorded with the 

voltage-sensing micropipette (Figure 3.0B).  

In both current- and voltage-clamp experiments, cells close to the nerve cord were used. We 

kept the amplifier gain high (~100) and the phase lag low (~0.15 - 0.5 ms) to limit 

oscillations but adjusted these in some recordings. For activation of the potassium currents, 

the muscle bags were held at -35 mV and stepped up to 0, 5, 10, 15, 20, 25 and 30 mV 

(Figure 3.0C); the currents lasted 40 ms. For activation of the calcium currents, the muscle 

bags were stepped from the holding potential of -35 mV to -25 mV and then in steps of 5 mV 

up to 20 mV. The calcium currents were isolated from the potassium currents by using 5 mM 

4-aminopyridine in the perfusion solution and equimolar amounts (1.5 M) of potassium and 

cesium acetates in the recording micropipettes and not making large depolarizations (Verma 

et al., 2009). There was no need to block voltage-activated sodium currents in isolating the 

calcium currents because nematodes lack voltage-activated sodium currents.  Calcium 

substitution experiments were performed by replacing calcium in the low-potassium APF-

ringer solution with equimolar cobalt.  
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The currents were leak-subtracted using pCLAMP 8.2 software. All drugs were initially 

applied in current clamp and the effects on the voltage-activated currents investigated in 

voltage-clamp with the drugs still perfusing. Control measurements of membrane potential 

and potassium currents were made before drug applications, then at 10 min intervals. Unless 

otherwise stated, all drugs used to study the mechanisms of action of emodepside were 

applied for 10 min before co-application for 10 min with emodepside and effects on 

membrane potential and K current compared to the control at 0 min.  The preparation was 

then washed in drug- free solutions and the wash (post-emodepside) effect measured 

following a 20 min time period.  Our subsequent account is based on recordings from more 

than 130 muscle cells, each from a separate A. suum preparation. The membrane potentials of 

the selected cells recorded from were all more negative than -25 mV with stable input 

conductance < 4.0 µS. 
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Figure 3.0 Electrophysiological techniques for recording from Ascaris suum.  

(A) A. suum muscle bag showing the current (I) and voltage (V) micropipettes in the bag and 

the perfusion needle (P). (B) Current-clamp protocol used: bottom trace shows the 40 nA 

currents injected for 500 ms at 0.30 Hz; top trace shows the resting membrane potential 

(straight line) and the membrane response to the injected current (downward deflections). (C) 

Voltage-clamp protocol: bottom trace shows the voltage steps from the holding potential of -
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35 mV to 0 mV and in steps of 5 mV to 30 mV; top trace shows the K currents generated in 

response to the voltage steps. 

 

3.3.5 Time control experiments to test the stability of effects of NO modulators, PKC 

modulators and iberiotoxin 

 
We conducted separate time-control experiments, without emodepside, to determine the 

time-course and stability of effects of the NO and PKC modulators on membrane potential 

and voltage-activated potassium currents. We found that 1 mM sodium nitroprusside (n = 4), 

1 µM staurosporine (n =3) and 100 µM N-Nitro L-arginine (n = 6) had no significant effect 

(p > 0.05) on membrane potentials or voltage-activated potassium currents when tested at 10, 

20 and 30 min during their application. Phorbol 12-myristate 13-acetate produced an increase 

in voltage-activated potassium currents and a small hyperpolarization within 5 min of 

application and did not show further change.  We also found that 10 nM iberiotoxin had no 

effect at 10, 20 and 30 min on membrane potential but iberiotoxin (by 10 min) reduced (n = 

3) voltage-activated potassium currents and this effect was not significantly (p > 0.05) 

changed at 20 and 30 min. 

 

3.3.6 Data analysis 

All acquired data were displayed on a Pentium IV desktop computer. GraphPad Prism 

software (version 5.0, San Diego, CA, USA) and Clampfit 9.2 (Molecular Devices, 

Sunnyvale, CA, USA) were used for the analysis. We observed the biggest effect of 
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emodepside on the late phase potassium currents (LK: we measured the average current 

during the period 30 – 40 ms after the step potential start) at a step potential of 0 mV. The 

reversal potential was calculated for voltage-activated potassium current experiments. To 

obtain the activation curves, we calculated the conductance changes from the outward 

potassium currents and the driving force, Erev-V. The activation curves were then fitted by 

the Boltzmann equation: 

 

G = Gmax / [1+exp {(V50-V)/Kslope}], 

 

where G = conductance, Gmax = maximal conductance change, V50 = half-maximal voltage, 

Kslope = slope factor. 

The current was expressed as percent control and plotted against voltage to determine how 

the currents changed with each voltage step. For experiments on the same preparation, one-

tailed paired t-test statistical analysis was used to estimate statistical significance, set at P < 

0.05. For comparison between effects on different preparations an unpaired t-test was used.  

We quote mean ± s.e. values throughout the text.  

To measure the emodepside-sensitive current as a proportion of the 4-aminopyridine 

sensitive current (at 0 mV) we first measured the control LK current, then the LK current at 10 

min application of 1 µM emodepside: the difference was the current activated by 

emodepside.  Next, we applied 5 mM 4-aminopyridine for 5 min and again measured the LK 

current: the difference between the LK current in the presence of 4-aminopyridine and the LK 

current at 10 min 1 μM emodepside was the 4-aminopyridine-sensitive current. The 

proportion was then determined and expressed as a % 
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3.3.7 Materials 

Emodepside was generously provided by Achim Harder (Bayer HealthCare AG, Germany). 

Emodepside stocks of 2 mM and 10 mM in 100 % DMSO were prepared every two weeks. 

The working emodepside concentrations of 1 and 10 µM were prepared so that the final 

DMSO concentration was 0.1 %. PF1 (SDPNFLRFamide, EZBiolab, Westfield, IN) stocks 

of 1 mM were prepared in distilled water every week. Ryanodine, staurosporine, iberiotoxin 

and phorbol 12-myristate 13-acetate (PMA) were obtained from Tocris Biosciences 

(Ellisville, MO, USA); 2 mM stock ryanodine was made every week. All stock 

concentrations were kept at -12oC, thawed and used once. Glucose, 4-aminopyridine, sodium 

nitroprusside dihydrate (SNP) and N-Nitro L-Arginine (NNLA) were obtained from Sigma-

Aldrich® (St. Louis, MO USA). HEPES was obtained from Calbiochem, EMD Biosciences 

Inc. (La Jolla, CA, USA). All other chemicals were obtained from Fisher Scientific®, Fair 

Lawn (NJ, USA). 

 

3.4 Results 

3.4.1 slo-1 and lat-1 homologous genes from A. suum are expressed at the adult stage 

Using C. elegans slo-1 and lat-1 deduced amino-acid sequences for query, databank searches 

revealed homologous A. suum sequences for both genes. The alignment of C. elegans SLO-1 

and LAT-1 sequences with their respective A. suum counterparts is presented in Figure 3.1.  

A. suum SLO-1 cDNA sequence (Genbank accession n° ACC68842.1) encodes a putative, 

1117 amino-acid protein, sharing 78% identity and 87% similarity with the Cel-SLO-1 
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sequence. SLO-1 sequences from both nematode species possess seven transmembrane-

spanning domains (S0 – S6), a P-loop, four hydrophobic intracellular segments, S7 – S10 and 

a “Ca2+ bowl” that typifies a large conductance calcium-sensitive potassium channel, SLO-1 

(Wallner et al., 1996; Wei et al., 1996; Schreiber and Salkoff, 1997; Lim et al., 1999; Ghatta 

et al., 2006). 

The predicted cDNA sequence for A. suum-LAT-1 encodes 986 amino-acids (Figure 3.1 B) 

which has 38% identity and 54% similarity to the Cel-LAT-1 sequence. Despite this limited 

conservation at the amino-acid level, the LAT-1 sequences from both nematode species share 

critical sequence features: the seven transmembrane regions, a galactose-binding lectin 

domain (PFAM Gal_Lectine: PF02140), a hormone receptor domain (SMART HormR: SM 

00008) and two G-protein coupled protein domains (SMART GPS: SM00303 and PFAM 

7Tm_2: PF00002). 

In order to provide further evidence for the expression of slo-1- and lat-1-like genes in the 

muscle flaps of A. suum, we performed a set of RT-PCR experiments using gene specific 

primers (Supplementary Table S3.0) designed for Asu-slo-1 and Asu-lat-1 cDNA sequences 

respectively. For both candidates, a single amplification product at the expected size was 

obtained (Supplementary Figure S3.0). Sequencing reactions showed that the amplicons 

corresponded to Asu–slo-1 and Asu-lat-1 respectively, and confirmed their expression in the 

muscle flaps of adult A. suum. Evidence for the presence of these two genes encouraged 

electrophysiological investigation of effects of emodepside.   
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Figure 3.1 Conservation of SLO-1 and LAT-1 sequences in C. elegans and A. suum. 

Alignments of deduced amino-acid sequences were constructed using the MUSCLE 

algorithm (Edgar, 2004) and further processed using GeneDoc program 

(http://www.nrbsc.org/gfx/genedoc/index.html). Identical amino-acids between C. elegans 

and A. suum sequences are shaded in dark blue and distinct amino-acids sharing similar 

physic-chemical properties are shaded in light blue. Predicted signal peptide sequences are 

shaded in grey. The transmembrane domains (TM) are noted below the sequences. (A) 

Comparison of Asu-SLO-1(GenBank accession no ACC68842.1) and Cel-SLO-1 (GenBank 

accession no NP_001024259.1) showing the 7 TM domains (S0-S6), P-loop, S7-S10 

intracellular domains and ‘Ca2+ bowl’. Domain annotation corresponds to A. suum SLO-1. 

(B) Comparison of Asu-LAT-1 (GenBank accession no ADY40714.1) and Cel-LAT-1 

(GenBank accession no NP_495894.1). Domain annotations correspond to A. suum LAT-1. 

 

 

3.4.2 Emodepside has an inhibitory effect on spiking 

Initially, we examined the effects of emodepside on muscle spiking under current-clamp as a 

way of discerning inhibitory actions of emodepside. We activated spiking by applying 1 µM 

ryanodine (Puttachary et al., 2010) and compared effects of emodepside with the 

neuropeptide PF1 because emodepside has been suggested to act by stimulating release of 

inhibitory neuropeptides like PF1.   

1 µM ryanodine produced a slow time-dependent increase in the spike frequency and 

comparison between the 20 and 35 minute period (Figure 3.2B) shows a significant increase 

of 15 spikes min-1 (p < 0.05, n = 7) in spike frequency.  Figure 3.2A shows a representative 

http://www.nrbsc.org/gfx/genedoc/index.html


www.manaraa.com

 77 

trace of the inhibitory effect of emodepside on the ryanodine-induced spiking. Emodepside 

significantly inhibited the ryanodine increase in spike frequency during the 20 and 35 minute 

period (Figure 3.2C) by 9.8 spikes min-1 (p < 0.05, n = 5). We also tested the effect of PF1 on 

ryanodine spiking and found that it was more potent and faster acting than emodepside: 1 µM 

PF1 decreased the ryanodine spike frequency by 46 spikes min-1 in a shorter time of 10 min 

(p < 0.01, n = 5, Figure 3.2D).  
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Figure 3.2 Effect of emodepside (1 µM) on membrane spiking.  

(A) Representative current-clamp trace showing the spiking induced by ryanodine (1 µM) 

and the inhibitory effect of emodepside on the spikes. (B) Bar chart (mean ± SEM) of the 

effects of ryanodine on the frequency of spikes. Ryanodine caused a time-dependent increase 
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in the spike frequency; comparison was made between 20 min and 35 min of ryanodine 

application (P < 0.05, n = 7, paired t-test). (C) Bar chart (mean ± SEM) of the effects of 

emodepside on the frequency of ryanodine-induced spikes. Emodepside abolished the 

increase in spike frequency; comparison was made between 20 min of ryanodine application 

and 15 min (35 min) of emodepside + ryanodine application (P < 0.05, n = 5, paired t-test). 

(D) Bar chart (mean ± SEM) of the effects of PF1 (1 µM) on the ryanodine-induced spike 

frequency. After just 10 min application, PF1 caused a decrease in spike frequency (P < 

0.01, n = 5, paired t-test). 

 

3.4.3 Effect of emodepside on membrane potential and input conductance 

Figure 3.3A shows a representative recording of the membrane potential before, during and 

after application of 1 µM emodepside. Perfusion of 1 µM emodepside for 10 min produced a 

slowly developing -5.2 mV hyperpolarization, which continued to increase during drug 

application; the resting input conductance was 3.5 µS before drug application and was not 

changed significantly by emodepside.  We observed that the onset of membrane 

hyperpolarization produced by emodepside varied between 30 sec to 3 min. The mean 

hyperpolarization at 10 min was -5.1 ± 0.75 mV (p < 0.001, n = 10, Figure 3.3B). The 

hyperpolarization was not reversible but continued to increase gradually despite washing.  At 

a higher concentration of 10 µM emodepside at 10 min, the hyperpolarization was -7.7 ± 1.2 

mV (p < 0.001, n = 6, Figure 3.3B) but there was still no significant change in input 

conductance. Comparison of the hyperpolarization caused by 1 and 10 µM emodepside 

showed that the hyperpolarization was concentration-dependent; the difference, -2.6 ± 1.3 

mV, was significant (p < 0.05, n = 16).  The membrane potentials of some of the muscle cells 
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showed spontaneous small depolarizing potentials which were reduced or completely 

abolished by the emodepside.   

To test if the membrane hyperpolarization caused by emodepside was mediated by opening 

of potassium channels, we used the potassium channel blocker, 5 mM 4-aminopyridine, in 

the perfusion solution throughout the experiment. Thus, there was a constant perfusion of 

low-K+ APF containing 5 mM 4-aminopyridine. In the presence of 4-aminopyridine, the 

mean resting membrane potential was unchanged but the hyperpolarizing effect of 1 µM 

emodepside was significantly reduced at 10 min to -1.8 ± 0.23 mV (p < 0.01, n = 8, Figure 

3.3B).  
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Figure 3.3 Effect of emodepside (1 µM) on membrane potential.  

(A) Representative current-clamp trace showing the membrane potential before, during and 

after 10 min application of 1 µM emodepside. (B) Bar chart (mean ± SEM) of the effects of 

emodepside on the membrane potential. Comparison was made between membrane potential 
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before and during emodepside application. Emodepside caused a significant membrane 

hyperpolarization (P < 0.001, n = 10, paired t-test) which was reduced in the presence of 4-

aminopyridine (5 mM) (P < 0.05, unpaired t-test). (C) Bar chart (mean ± SEM) of the effects 

of NO on emodepside-induced hyperpolarization. In the presence of 1 mM SNP, emodepside 

(1 µM) caused an increased hyperpolarization (P < 0.01, n = 4, paired t-test). NNLA (100 

µM) decreased the hyperpolarization caused by emodepside (P < 0.01, unpaired t-test). (D) 

Bar chart (mean ± SEM) of the effects of protein kinase modulators on emodepside-induced 

hyperpolarization. PMA (10 µM) had no significant effects on the hyperpolarization caused 

by emodepside. However, staurosporine (1 µM) decreased the hyperpolarization caused by 

emodepside (P < 0.05, unpaired t-test). 

 

 

 

3.4.4 Emodepside effect on membrane potential: role of NO and PKC 

The slow hyperpolarizing effect of emodepside and sensitivity to 4-aminopyridine has 

similarities to the effect of the neuropeptide PF1 in A. suum and effects of PF1 are mediated 

by nitric oxide synthase (Bowman et al., 1995; 2002; Verma et al., 2009). We therefore 

tested the effects of N-Nitro-L-Arginine (NNLA), an inhibitor of inducible nitric oxide 

synthase (iNOS) and sodium nitroprusside (SNP), an NO releasing agent on the actions of 

emodepside.   

In the presence of 100 µM NNLA, the emodepside hyperpolarization was significantly 

reduced to -1.3 ± 0.44 mV (p < 0.01, n = 6, Figure 3.3C). In contrast, in the presence of 1 
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mM SNP, emodepside caused a significantly increased hyperpolarization of -9.5 ± 1.6 mV (p 

< 0.01, n = 4, Figure 3.3C).  Both of these observations suggest a role for NO in the 

mediation of the emodepside effects. In time control experiments, NNLA and SNP had no 

significant effect by themselves on the membrane potential.   

We further investigated the role of protein kinase C (PKC) in mediating the effects of 

emodepside since emodepside has been suggested to bind to latrophilin-like receptors in C. 

elegans which can signal through Gq proteins and PKC in other preparations.  1 µM 

staurosporine, a broad-spectrum protein kinase inhibitor, significantly reduced the 

hyperpolarization produced by 1 µM emodepside to -2.1 ± 0.48 mV (p < 0.05, n = 4, Figure 

3.3D). Staurosporine, by itself, had no significant effects on the membrane potential.  The 

protein kinase C activator, PMA (10 µM), produced a small but significant hyperpolarization 

(-2.1 ± 0.3 mV, p < 0.05, n = 5).  However, in the presence of the 10 µM PMA, 1 µM 

emodepside produced an additional membrane hyperpolarization of -4.9 ± 1.0 mV (p < 0.01, 

n = 5, Figure 3.3D). The effects of PMA and staurosporine are consistent with a role for PKC 

in the emodepside signaling pathway.  

 

3.4.5 Effect of emodepside (1 µM) on voltage-activated K+ currents 

We investigated the effects of 1 µM emodepside on the voltage-activated K currents. Given 

the slow onset of emodepside effects on spiking and membrane potential, we investigated the 

time-dependent effects of 1 µM emodepside on the K currents, Figure 3.4. In control 

recordings, we tested and observed no significant change in the voltage-activated K currents 

at 10, 20, 30 and 40 min.  We applied the emodepside for 30 min and examined the effect on 



www.manaraa.com

 84 

the K currents at 10 min intervals. Figure 3.4A shows representative K current traces of the 

control and 1 µM emodepside effects at 10, 20 and 30 min where it produced time-dependent 

increases in the currents. The maximum % increase in the late phase K currents (Lk) was 

observed at the 0 mV voltage step; at the higher voltage steps, 1 µM emodepside produced 

smaller % changes with no effect at +30 mV.  In the sample plot of Figure 3.4B, 1 µM 

emodepside increased Lk at 0 mV to 130 %, 146 % and 167 % at 10 min, 20 min and 30 min, 

respectively. A similar trend was observed in all recordings (0 mV, Figure 3.4C, n = 4) where 

1 µM emodepside significantly increased the currents at 10 min, 20 min and 30 min by 

means of 25 % (p < 0.01), 41 % (p < 0.01) and 73 % (p < 0.05) respectively. We tested the 

effects of 1 µM emodepside on the K current activation curves and were only able to see 

small changes in the kinetic parameters V50 and Gmax throughout the application of 

emodepside.  

When we applied emodepside for 10 min and then washed for 20 min we observed a 

continued increase in the K current following the onset of washing, Figure 3.4D, E & F.  We 

termed the wash observations at 20 min, the post-emodepside period. In the sample plot in 

Figure 3.4E, LK increased to 133% after 10 min exposure to 1 µM emodepside and to 186% 

following a further period of 20 minutes washing. We observed a similar trend in all 9 

recordings: on average, 1 µM emodepside increased LK by 28 % (p < 0.001, Figure 3.4F) at 

10 min and by 59 % (p < 0.01, Figure 3.4F) at the 20 min post-emodepside period.   
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Figure 3.4 Effect of emodepside (1 µM) on voltage-activated LK currents.  

(A) Representative voltage-clamp traces of control K+ current and the time-dependent effects 

of emodepside on the K+ currents, all at 0 mV. (B) Sample plot of current (% control) against 

voltage showing the voltage-dependence of the K+ currents increased by emodepside at 

different time points. (C) Bar chart (mean ± SEM) of the effects of emodepside on LK 

currents. Comparison was made between control 0 mV step current at 30 – 40 ms and the 
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corresponding current increased by emodepside at 10, 20 and 30 min. Emodepside increased 

LK currents at 10 min (P < 0.01, n = 4, paired t-test), 20 min (P < 0.01, n = 4, paired t-test) 

and 30 min (P < 0.05, n = 4, paired t-test). (D) Representative voltage-clamp traces of 

control LK current, the effects of emodepside on the LK current and the LK currents after 20 

min wash (post-emodepside). (E) Sample current (% control) versus voltage plot showing 

how the LK currents change with voltage. Emodepside increased the current after 10 min and 

the increase was sustained at the post-emodepside period. (F) Bar chart (mean ± SEM) of the 

effects of emodepside on the LK currents. After 10 min perfusion, emodepside increased the 

LK currents (P < 0.001, n = 9) and the increase was sustained during the post-emodepside 

period (P < 0.01, n = 9). 

 

 

 

3.4.6 Effect of emodepside (10 µM) on voltage-activated K+ currents 

We increased the concentration of emodepside to 10 µM in order to resolve effects on the 

kinetic parameters of the K current activation curves.  Figure 3.5A shows representative 

traces. Figure 3.5B shows the average effect of 10 µM emodepside on the LK currents. In the 

6 recordings, 10 µM emodepside increased the LK current by an average of 29 % (p < 0.05, 

Figure 3.5B) and 87 % during the post-emodepside period (p < 0.05, Figure 3.5B).  The 

activation curve, Figure 3.5C, shows that 10 µM emodepside shifted V50 by 2.7 mV in the 

hyperpolarizing direction and by 6.4 mV during the post-emodepside period; there was no 

change in the Gmax.  Similar hyperpolarizing shifts without changes in Gmax were observed in 
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all 6 experiments: 2.9 ± 0.3 mV (p < 0.05) in 10 μM emodepside and 6.6 ± 1.0 mV (p < 0.01) 

in the post-emodepside period.  In control experiments we found that the conductance-

voltage plots showed little or no change in V50 throughout a 40 minute recording period: 

specifically, at 20 min it was 0.28 ± 0.10 mV, n= 6; at 30 min it was 0.50 ± 0.20 mV, n= 6. 

The shape of the conductance activation curve with an increase in V50, can explain why the 

emodepside K current is greater at 0 mV with little change near +30 mV: emodepside is not 

altering the maximum opening of channels but their voltage-sensitivity. 
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Figure 3.5 Effect of emodepside (10 µM) on the voltage-activated LK currents.  

(A) Representative traces of the control LK current, the effects of emodepside on the current 

and the post-emodepside LK current at 0 mV. (B) Bar chart (mean ± SEM) of % increase in 

LK currents produced by emodepside (P < 0.05, n = 6, paired t-test) and the continued 

increase at the post-emodepside period (P < 0.05, n = 6, paired t-test). (C) Sample activation 

curve of the LK currents; conductance-voltage plots were fitted to the Boltzmann equation. 
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Emodepside shifted the V50 in the hyperpolarization direction and the shift was sustained 

during the post-emodepside period. Essentially no change in Gmax was observed.  

 

 

 

3.4.7 Ca2+ is required for effects of emodepside on K+ currents 

We replaced extracellular Ca2+ with equimolar Co2+ to determine the Ca2+ requirement for 

the action of emodepside on K currents. In the absence of Ca2+ the effect of 1 µM 

emodepside was reduced; we observed only a 12.0 ± 5.0 % increase in LK at 10 min and a 

33.0 ± 17.0 % increase post-emodepside.  The increases were not significantly different from 

the control Lk (p > 0.05, n = 10).  These observations show that Ca2+ was required for effects 

of emodepside on the LK current and because Ia– and IK–like K currents are present in A. 

suum in Ca2+ free condition (Martin et al., 1992) the experiments suggest that emodepside 

does not act directly on Ia– or IK–like K currents. 

 

3.4.8 Emodepside effects on K+ currents: role of NO and PKC 

We investigated the role of NO on the effects of emodepside on the K+ currents using SNP as 

an NO donor and NNLA as an iNOS inhibitor. 1 mM SNP by itself does not cause a 

significant change in the Lk currents even after 30 min (p > 0.05, n = 4).  Figure 3.6A shows 

representative K+ current traces with control, effects of 1 mM SNP, and 1 µM emodepside + 

1 mM SNP and post emodepside LK currents. In 6 preparations, 1 µM emodepside, in the 

presence of 1 mM SNP, caused a mean increase of 32 % in the LK currents at 10 min which 
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was statistically significant (p < 0.05, n = 5, Figure 3.6D) and a mean increase of 98 % (p < 

0.05, n = 4) at the post emodepside period.  The activation curve, Figure 3.6C, shows that in 

the presence of SNP, emodepside shifted the V50 in the hyperpolarization direction by 2.9 mV 

and during the post-emodepside period, the shift was increased to 4.6 mV. The mean shift in 

the V50 at 10 min was 2.4 mV (p < 0.05, n = 6) and 6.2 mV (p < 0.01, n = 6) post-

emodepside.   

 

100 µM NNLA had no significant effect on K currents or membrane potential in control 

experiments (p > 0.05, n=3) but NNLA inhibited the effect of emodepside on K currents. In 

the presence of 100 µM of NNLA, there was little effect (1.9 ± 1.0 % increase, p > 0.05, n = 

6) of 1 µM emodepside on the Lk currents at 10 min and the effect at the 20 min post-

emodepside period was reduced to 26.0 ± 11.0 % (p < 0.05, n = 5), data not illustrated.  Thus 

NNLA reduced the effects of emodepside on the K currents. The effects of both SNP and 

NNLA together indicate a role for NO during the action of emodepside.  
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Figure 3.6 Effect of emodepside (1 µM) and SNP (1 mM) on the voltage-activated LK 

currents.  

(A) Representative traces of control LK current, the effects of emodepside + SNP on the LK 

current and the post-emodepside LK current, all at 0 mV. (B) Bar chart (mean ± SEM) of % 

increase in LK current produced by emodepside in the presence of SNP (P < 0.05, n = 5, 

paired t-test) and the continued increase in the post-emodepside period (P < 0.05, n = 4, 
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paired t-test). (C) Sample activation curve of the LK currents; conductance-voltage plots were 

fitted to the Boltzmann equation. In the presence of SNP, emodepside shifted the V50 in the 

hyperpolarization direction. Essentially no change in Gmax was observed. 

 

 

 

 

We investigated the role of PKC in emodepside effects on the K currents using PMA as a 

PKC activator and staurosporine as a kinase inhibitor. PMA, by itself produces a small stable 

but significant increase in the K currents and small hyperpolarization.  Figure 3.7A shows 

representative traces of the control LK current, effect of 10 µM PMA on the LK current, 1 µM 

emodepside + 10 µM PMA effect on the LK current and the post-emodepside LK current.  In 

all 5 recordings, PMA caused a mean increase to 131 % of the control (p < 0.05) in the LK 

currents and 1 µM emodepside, in the presence of the PMA, caused a further increase to 

145% (p < 0.01) in LK currents.  During the post-emodepside period, the mean increase in the 

LK current was to 191% (p < 0.05).  In the representative activation curve in Figure 3.7C, 

PMA caused a 1.6 mV shift in the V50 in the hyperpolarization direction, whilst emodepside 

+ PMA caused a further hyperpolarizing 2.4 mV shift in the V50; during the post-emodepside 

period, there was a further additional hyperpolarizing shift 4.5 mV in V50. There was no 

change in Gmax. On average, PMA shifted V50 by 1.9 mV (p < 0.05, n = 5) and emodepside + 

PMA shifted it by 2.8 mV (p < 0.01, n = 5).  PMA by itself increases the K currents and 

shifts the LK current activation curve; we can see from these observations PMA mimics some 

of the effects of emodepside.  
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When we tested the effect of 1 µM staurosporine by itself on the K currents in control 

experiments,  we found that it had no significant effect (at 30 min mean decrease 4.4 ± 4.0%, 

p > 0.05, n = 3).   We found however, that staurosporine inhibited the action of 1 µM 

emodepside.  Figure 3.7 shows effects on representative K currents. Figure 3.7E shows 

summary bar-charts and that 1 µM staurosporine, at 10 min, had no effect on the Lk current.  

The effect of 1 µM emodepside was no-longer activating but was inhibitory with a mean 

decrease of 10 % (p < 0.05, n = 4, Figure 3.7E).  The effects of PMA mimicking emodepside, 

and the loss of emodepside activation when pretreated with staurosporine, together indicate a 

role for PKC during the action of emodepside. The inhibitory action of emodepside following 

staurosporine suggests additional actions of emodepside but these were not explored further.   
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Figure 3.7 Effects of emodepside (1 µM) + PKC modulators on the voltage-activated LK 

currents.  

(A) Representative traces of control LK current, the effects of PMA (10 µM) alone, 

emodepside + PMA and the post-emodepside period on the LK current. (B) Bar chart (mean ± 

SEM) of the % increases in LK currents caused by PMA (P < 0.05, n = 5, paired t-test), 

emodepside + PMA (P < 0.01, n = 5, paired t-test) and post-emodepside (P < 0.05, n = 3, 

paired t-test). Comparison was made with the % control LK current. (C) Conductance-voltage 

plots were fitted to the Boltzmann equation. In the activation curves shown, PMA and 

emodepside + PMA shifted the V50 in the hyperpolarization direction. Essentially no change 

in Gmax was observed. (D) Representative traces showing the effects of emodepside (1 µM) + 

staurosporine (1 µM) on the LK current. (E) Bar chart (mean ± SEM) of % change in currents 

caused by emodepside + staurosporine. Comparison was made with the % control LK current. 

In the presence of staurosporine, emodepside decreased the LK (P < 0.05, n = 4, paired t-test) 

and the decrease was sustained during the post-emodepside period. 

 

 

 

 

3.4.9 The 4-aminopyridine-sensitive K+ current includes Ia as well as the emodepside-

activated current 

We found that in the presence of 5 mM 4-aminopyridine, 1 μM emodepside had no 

detectable effect on K+ currents (p > 0.05, n = 8). When we applied 4-aminopyridine after the 
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emodepside, and measured the emodepside-activated K current as a proportion of the total 4-

aminopyridine-sensitive K+ current, it was only 50 ± 16 % (n = 6). Martin et al. (1992) have 

shown that 5 mM 4-aminopyridine selectively inhibits Ia–like K+ currents but not IK–like K+ 

currents in A. suum under Ca2+ free conditions.  The sensitivity of the emodepside K+ 

currents to 4-aminopyridine shows that emodepside does not activate IK currents.  The 

presence of Ca2+ here, allows K+ currents to be activated by emodepside.  We found that the 

total 4-aminopyridine-sensitive current was bigger than the emodepside-activated current, 

indicating that 4-aminopyridine was not selective and inhibits the emodepside K+ current as 

well as the Ia–like K+ current.     

 

3.4.10 Effect of iberiotoxin 

We examined the effects of iberiotoxin; a selective inhibitor of high conductance Ca2+-

activated K+ (SLO-1) channels with IC50s often in the sub-nanomolar ranges (Galvez et al., 

1990; Candia et al., 1992; Gruhn et al., 2002).  10 nM iberiotoxin was used to minimize 

effects on other channels (Sones et al., 2009).  Iberiotoxin produced a significant decrease (-

23.7%, p < 0.05, n = 4) in the control LK currents, Figure 3.8, without a detectable change in 

membrane potential, indicating the presence of iberiotoxin-sensitive SLO-1-like K+ channels 

in A. suum.  The application of 1 µM emodepside was able to counter some of the effects of 

10 nM iberiotoxin, producing hyperpolarization (-4.1 ± 0.2 mV, p < 0.05, n = 4) and a return 

of the LK currents towards control levels, Figure 3.8, but emodepside no-longer increased the 

K+ current above the control (p > 0.05). Thus iberiotoxin reduced (but did not entirely block) 

effects of emodepside indicating that iberiotoxin-sensitive SLO-1-like channels are involved.   
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Figure 3.8 Effects of emodepside (1 µM) and iberiotoxin (10 nM) on the voltage-activated LK 

currents.  

(A) Representative traces of control LK current, 10 nM iberiotoxin effect on the LK currents, 

emodepside + iberiotoxin effect on the LK currents and the post-emodepside LK currents. (B) 
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Current, expressed as % control, at 0 mV showing the inhibitory effect of iberiotoxin and 

emodepside on the LK currents. 

 

 

 

3.4.11 Emodepside effects on voltage-activated Ca2+ currents 

We investigated the effects of 1 µM emodepside on the voltage-activated Ca2+ currents. The 

inhibitory neuropeptide PF1, which has been suggested to be mimicked by emodepside, has 

been shown to significantly inhibit the voltage-activated Ca2+ currents in A. suum (Verma et 

al., 2009). In all 9 recordings, we observed no significant effect of 1 µM emodepside on the 

Ca2+ currents (Figure 3.9). 
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Figure 3.9 Effects of emodepside (1 µM) on the voltage-activated Ca2+ currents.  

(A) Representative inward Ca2+ current traces of control, 1 µM emodepside and the post-

emodepside currents. (B) Bar chart (mean ± SEM) of the effects of emodepside on the 

inward Ca2+ currents (green: 20 min post-emodepside). Emodepside has essentially no effect 

on the voltage-activated inward Ca2+ currents (P > 0.05, n = 9, paired t-test). (C) Current-

voltage plot showing no effect of emodepside on the inward Ca2+ currents at the different 

voltage steps. 
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3.5 Discussion 

3.5.1 Different mode of action 

Emodepside is a cyclooctadepsipeptide anthelmintic that selectively inhibits muscle 

contraction of nematodes (Willson et al., 2003).  It is effective against nematode isolates that 

have developed resistance to drugs from the other major classes of anthelmintic (Samson-

Himmelstjerna von et al., 2005): ivermectin (an allosteric modulator of GluCl channels 

(Pemberton et al., 2001)), levamisole (a nematode selective nAChR agonist)   and febantel (a 

selective ligand for nematode β-tubulin (Miro et al., 2006). Because emodepside retains its 

efficacy against these resistant isolates, it implies that emodepside has a different mode of 

action. In this paper we have examined effects of emodepside on the electrophysiology of A. 

suum muscle using two micropipette current- and voltage-clamp techniques with a view to 

determining its mechanism of action. 

 

3.5.2 Emodepside is not a GABA receptor agonist 

The earliest studies on the mechanisms of action of the cyclooctadepsipeptides used 

PF1022A. PF1022A seemed to exert its anthelmintic action on the nerves or muscle rather 

than affecting energy metabolism because low concentrations of PF1022A (<1 µM) 

depressed the motility of the nematode parasite, Angiostrongylus cantonensis (Terada, 1992). 

Chen et al. (1996) reported that PF1022A bound to GABA receptors of Ascaris suum muscle 

suggesting a direct effect on nematode GABA receptors. However, direct 

electrophysiological recording from Ascaris suum muscle found that PF1022A did not act 
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like GABA, nor did it act as a cholinergic antagonist (Martin et al., 1996a).  Emodepside 

does not produce an increase in the muscle membrane conductance like GABA or piperazine 

(Martin, 1982) again showing that these compounds do not act as GABA agonists.    

GeBner et al. (1996) reported that the depsipeptides PF1022A, PF1022-001 (antipode of 

PF1022A), valinomycin, enniatin A1 and beauvericin have ionophore activities, increasing 

the bilayer conductivity to monovalent ions like Na+, Li+, K+ and Cs+. However, they 

reported that only PF1022A exerts high paralytic effect on A. suum, suggesting that the 

anthelmintic effects of the cyclooctadepsipeptides are not attributable to ion-carrier activity. 

 

3.5.3 K+-dependent hyperpolarization by releasing inhibitory neuropeptides (PF1/PF2) 

Willson et al. (2003) tested the effects of emodepside on Ascaris suum muscle contraction 

and electrophysiology.   They observed that 10 µM emodepside had a much slower inhibitory 

action on muscle contraction than GABA and produced a slow hyperpolarization with no 

detectable change in input conductance.  The inhibitory neuropeptide, PF2, was also reported 

to cause slow inhibition of contraction of A. suum muscle, similar to emodepside (Fellowes et 

al., 2000; Willson et al., 2003). In this study we have observed similar, but concentration-

dependent, effects with emodepside.  Willson et al., (2003) showed that the K channel 

blocker 4-aminopyridine inhibited the effect of emodepside on membrane potential and 

suggested that emodepside may stimulate the release of inhibitory neuropeptides like PF1 or 

PF2 to produce its effects.   PF1 causes slow, non-reversible, concentration-dependent 

membrane hyperpolarization that is significantly blocked by 4-aminopyridine (Franks et al., 

1994; Verma et al., 2009). Here we have also observed similar effects of emodepside on the 
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membrane potential. Despite the similarity in PF1 and emodepside effects on the membrane 

potential, we have demonstrated clear differences in their mode of action. Unlike PF1 that 

has been reported to significantly inhibit voltage-activated Ca2+ currents (Verma et al., 

2009), we observed no effects of emodepside on the voltage-activated Ca2+ currents.  We 

also observed that emodepside inhibited the ryanodine-induced spiking more slowly than 

PF1, probably because of the lack of emodepside effect on the voltage-activated Ca2+ 

currents. Though there are similarities in the effects of emodepside and the inhibitory 

neuropeptides PF1 and PF2, our body of evidence does not support the hypothesis that 

emodepside stimulates the release of a PF1-like neuropeptide.  

 

3.5.4 Latrophilin Receptors 

In 2004, Willson et al. described observations on the C. elegans pharynx with emodepside 

(100 nM) acting as an agonist to stimulate exocytosis and elicit pharyngeal paralysis.  The 

paralysis of the pharynx produced by emodepside depended on the presence of LAT-1 with 

emodepside resistance appearing in lat-1 null mutants.   We observed evidence of expression 

of Asc-lat-1 in adult muscle flaps and PKC & NO signaling pathways suggesting activation 

of G-protein receptor(s) by emodepside.   Muhlfeld et al. (2009) used surface plasmon 

resonance to show that the neuropeptides AF1, AF10 and PF2 bind, albeit with low affinities, 

to HC110-R, implying that these neuropeptides may be putative natural ligands of the 

latrophilin-like receptor. They observed no reasonable binding characteristics with PF1 and 

other neuropeptides.  Our observations, however, do not rule out a possible direct effect of 

emodepside on K channels. 
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3.5.5 SLO-1 as a target for emodepside in C. elegans  

Guest et al. (2007) described use of a mutagenesis screen to generate alleles of slo-1 that 

encodes for a calcium-activated K channel in C. elegans. They observed that slo-1 but not 

slo-2 null mutants were more resistant to the inhibitory effects of emodepside than lat-1 and 

lat-2 (latrophilin receptor) double mutants.  Guest et al. (2007) proposed that emodepside 

either directly or indirectly activates SLO-1 that is present in body wall muscle and motor 

neurons to produce its inhibitory effects in nematodes.  Interestingly when slo-1 was 

selectively expressed in the pharyngeal muscle of slo-1 null mutants, there was no effect of 

emodepside on the frequency of pharyngeal pumping contrary to what might be expected if 

emodepside exerts a direct effect on SLO-1. However, slo-1 may regulate other features of 

the pharyngeal activity such as pump duration and pump interval and the effect of 

emodepside on these parameters remains to be investigated.   

 

3.5.6 SLO-1 as a target for emodepside in Ascaris suum  

We have observed expression of Asc-slo-1, an evolutionary conserved homolog of the slo-1 

gene in adult A. suum body muscle flaps; and have also observed a high conductance 250 pS 

K channel present in the A. suum bag membrane (unpublished single-channel observations).  

There is a Ca2+-dependent and voltage-activated K channel present in A. suum muscle which 

is affected by the inhibitory neuropeptide PF1 (Verma et al., 2009).  Our studies here indicate 

that the target of emodepside includes SLO-1-like K channels. We have observed: a Ca2+-

dependent and voltage-activated K current activated by emodepside; the inhibitory effects of 
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5 mM 4-aminopyridine on this current (which also blocks Ca2+-independent Ia- but not Ca2+-

independent IK-like K currents in A. suum, (Martin et al., 1992)); inhibitory effects of 10 nM 

iberiotoxin (which has selective effects on SLO-1 K currents, (Galvez et al., 1990; Candia et 

al., 1992; Gruhn et al., 2002). Not all of the emodepside K current was blocked by 

iberiotoxin which may be due to different types of β-subunits present with the SLO-1 α-

subunits that effect iberiotoxin sensitivity  (Meera et al., 2000b) or effects on K channels 

other than SLO-1, Ia or Ik.     

We observed that the effect of emodepside was very slow in onset and increased over a 

period of more than 10 minutes.  For example in our ryanodine-induced spiking experiments, 

we observed the speed of onset of the inhibitory action of emodepside was slower that the 

onset of PF1.  The slowly developing effect of emodepside may be due to the highly 

lipophilic nature of this compound and a membrane partitioning effect. Indeed, the potency 

of a similarly lipophilic anthelmintic, ivermectin also follows a slow time-course in 

electrophysiological experiments in A. suum (Kass et al., 1980). Alternatively the slow time-

course and persistence may be because emodepside does not directly activate the K channels 

but acts though a signaling cascade.  We found that the emodepside effect was potentiated by 

a NO donor and a PKC activator, while antagonism of iNOS and inhibition of protein kinase 

with staurosporine inhibited the effects of emodepside.  Interestingly, these signaling 

molecules are known activators of SLO-1 in other cells (Bolotina et al., 1994; Mistry and 

Garland, 1998; Wang et al., 1999b; Holden-Dye et al., 2007) and therefore emodepside may 

act through either or both of these signaling cascades and the signaling cascades may be in 

series or parallel. A number of studies on the mammalian orthologues of SLO-1 show that 

they are directly and alternately regulated by complex, multiple signaling cascades, involving 
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NO and diacylglyerol or Ca2+-dependent PKC activation (Ghatta et al., 2006; Salkoff et al., 

2006).   Although emodepside is lipophilic, and this is consistent with the observed lack of a 

washout effect (Willson et al., 2003; Schurmann et al., 2007), we observed that the effect of 

emodepside on voltage-activated K currents continued to increase following washout.  This 

is similar to PF1 (Verma et al., 2009) and therefore an additional, or alternative, explanation 

may be the involvement of a second messenger(s) signaling cascade.   

 

To conclude, Asu-slo-1 and Asu-lat-1 are expressed in body flaps of the nematode parasite A. 

suum.  Emodepside produces a 4-aminopyridine-sensitive hyperpolarization of the muscle 

membrane potential and potentiates voltage- & calcium-dependent, 4-aminopyridine- & 

iberiotoxin-sensitive, SLO-1-like channel  currents that were affected by modulators of NO 

and PKC signaling pathways. Emodepside had no effect on voltage-activated calcium 

currents.  The effects are consistent with a model in which NO, PKC and emodepside 

signaling pathways converge on the K channels, and/or a model in which emodepside 

activates the K channels through an NO or a PKC signaling cascade. Further experiments on 

heterologous expression systems are required to distinguish between these modes of action.  
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3.7 Supplementary information 

 

 

Supplementary Figure S3.0 Ethidium bromide stained agarose gel showing patterns revealed 

by RT-PCR for transcription of Asu-slo-1 and Asu-lat-1 from adult stage muscle flap.  

M: Molecular marker   

 

Table 4 Primer sequences used for Asu-slo-1 and Asu-lat-1 RT-PCR experiments 

Gene name Primer name 
 

Primer sequence 

Asu-slo-1 Asu-slo-1F1 ATGAGTGATGTGTATCACTCG 

Asu-slo-1 Asu-slo-1F2 TTTACCGGCACAGTTATGGAT  

Asu-slo-1 Asu-slo-1R1 ATCGAACTGCTCCAGTACGTA 

Asu-slo-14  Asu-slo-1R2 ATAGGGTATCTGTGTACATTT 

Asu-lat-1 Asu-lat-1F1 ATGAAGCAAGCAATTATCATT 
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Asu-lat-1 Asu-lat-1F2 CATTTCGCAGTCCTAATGGAT 

Asu-lat-1 Asu-lat-1R1 CATATCACCATATGCTATCGT 

Asu-lat-1 Asu-lat-1R2 GAACGCGTAGGCCATCACTGT 

 

 

3.7.1 Diethylcarbamazine (DEC) potentiates emodepside effect on membrane potential and 

voltage-activated K+ currents 

We tested the effect of the anthelmintic diethylcarbamazine (DEC) on emodepside-induced 

hyperpolarization and increase in voltage-activated K+ currents. DEC is used in the treatment 

of filarial diseases in humans, and heartworm disease (Dirofilaria imitis) in dogs. For 

example, a 6 mg/kg DEC plus 400 mg albendazole is used in the treatment of Wuchereria 

bancrofti and Brugia malayi in a mass drug administration (MDA) campaign in Thailand 

(Bhumiratana et al., 2010). The effect of DEC on Brugia malayi have been shown to be 

dependent on the inducible NOS and the cyclooxygenase pathways (McGarry, 2005). 

Emodepside effect on the membrane potential was potentiated by DEC. 1 µM emodepside 

plus 100 µM DEC caused a significant hyperpolarization of 10.0 ± 2.0 mV (p < 0.01, n = 5, 

paired t-test, fig S3.1A) without significantly changing the input conductance. 100 µM DEC 

by itself caused a small, insignificant hyperpolarization. 

Next, we investigated the effect of 100 µM DEC on the emodepside-induced increase in the 

SLO-1-like K+ currents. We measured the change in the early phase K+ currents (EK), as 

opposed to the late phase currents (LK). We elected to measure the EK currents here because 

we observed that DEC and emodepside increased this phase of the K+ currents more than 
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they increased the LK K+ currents. DEC alone significantly increased the EK SLO-1-like K+ 

currents by 20 % (p < 0.01, n = 4, paired t-test, fig S3.1C). When we applied 1 µM 

emodepside + 100 µM DEC, there was a 47 % increase in the EK SLO-1-like K+ currents (p 

< 0.01, n = 4, paired t-test, fig S3.1C) which continued to increase to 72 % during the post-

emodepside period (p < 0.01, n = 4, paired t-test, fig S3.1C). In the change in half-maximal 

voltage bar chart in figure S3.1D, DEC shifted the average V50 by 1.4 mV (p < 0.001, n = 5, 

paired t-test) in the hyperpolarization direction and in the presence of emodepside + DEC, 

there was a further 3.2 mV (p < 0.01, n = 5, paired t-test) shift in the V50. During the post-

emodepside period, the shift in the hyperpolarization direction of the V50 continued to 4.7 mV 

(p < 0.01, n = 4, paired t-test). DEC and emodepside therefore lowers the voltage threshold 

for activation of the voltage-activated K+ channel currents. DEC and emodepside had modest 

effects on the maximum conductance, Gmax. Whereas DEC decreased Gmax by 0.94 µS (p < 

0.01, n = 5, paired t-test), emodepside + DEC decreased Gmax by 1.2 (p < 0.05, n = 5, paired 

t-test). 
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Supplementary figure S3.1 Effect of diethylcarbamazine (DEC) and emodepside on the 

membrane potential and voltage-activated K+ currents in A. suum.  

(A) Bar chart (Mean ± SEM) of the effect of 1 µM emodepside + 100 µM DEC on the 

membrane potential. 1 µM emodepside caused a significant hyperpolarization (P < 0.001, n 

= 10, paired t-test) which was significantly potentiated by 100 µM DEC (P < 0.01, n = 5, 

paired t-test). (B) Representative traces of control EK current, 100 µM DEC effect on the EK 

currents, emodepside + DEC effect on the EK currents and the post-emodepside EK currents. 
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(C) Bar chart (mean ± SEM) of the % increases in EK currents caused by DEC (P < 0.01, n = 

4, paired t-test), emodepside + DEC (P < 0.01, n = 4, paired t-test) and post-emodepside (P 

< 0.05, n = 4, paired t-test). Comparison was made with the % control EK current. (D) Bar 

chart (mean ± SEM) of the change in half-maximal voltage, V50, caused by DEC (P < 0.001, 

n = 5, paired t-test), emodepside + DEC (P < 0.01, n = 5, paired t-test) and post-emodepside 

(P < 0.01, n = 4, paired t-test).  
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Chapter 4 Levamisole-sensitive acetylcholine receptors of Oesophagostomum 

dentatum: diversity revealed by functional expression in Xenopus oocytes 

A paper to be submitted to PLoS Pathogens 2012 

Samuel K. Buxton1, 2, Claude L. Charvet2, 3, Cedric Neveu2, Jacques Cabaret2, Jacques 

Cortet2, Alan P. Robertson2, Richard J. Martin2, 4* 

4.1 Abstract 

More than 1.5 billion people are infected with parasitic nematodes. Parasitic nematode 

infections of animals have significant economic value. Oesophagostomum dentatum is a pig 

nodular worm that belongs to the same clade as Caenorhabditis elegans and Haemonchus 

contortus. The acetylcholine receptors in O. dentatum and other parasitic nematodes are 

targets for anthelmintics like levamisole and pyrantel. The C. elegans and H. contortus 

levamisole-sensitive receptors have been characterized in Xenopus oocytes, revealing 

important differences between the receptors in these nematodes. We have cloned four 

acetylcholine receptor subunits from O. dentatum (Ode-unc-29, Ode-acr-8, Ode-unc-38, 

Ode-unc-63) which are more identical to the homologs of H. contortus than C. elegans. By 

employing the H. contortus ancillary factors, RIC-3, UNC-50 and UNC-74, we demonstrate 

that these four O. dentatum subunits reconstitute four pharmacologically different levamisole 

receptor subtypes. Unlike in the C. elegans levamisole receptor, all four O. dentatum receptor 

subtypes responded to nicotine. When Ode-unc-29 and Ode-unc-63 were injected into the 

oocytes, a receptor that responded to pyrantel as the most potent agonist was formed (Pyr-

nAChR subtype). When the subunit mix Ode-(unc-29: unc-63: unc-38) was injected, a 

receptor that responded to pyrantel and tribendimidine as the most potent agonists was 
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formed (Pyr/Tbd-nAChR subtype). These two receptor subtypes did not respond to 

bephenium and thenium. Injecting the subunit mix Ode-(unc-29: unc-63: acr-8) formed a 

receptor with ACh as the most potent agonist (nAChR subtype) and responses to bephenium 

and thenium. Last but not least, a receptor with levamisole as the most potent agonist (Lev-

nAChR subtype) was formed when all four subunits were injected. The anthelmintic 

derquantel distinguished levamisole and pyrantel responses in the Lev-nAChR subtype, with 

pA2 values of 6.8 and 8.4 respectively, demonstrating the formation of more than one 

receptor subtype when all four subunits were injected. The calcium permeability (PCa/PNa) of 

the Pyr/Tbd-nAChR, nAChR and Lev-nAChR subtypes differed; PCa/PNa of 0.38, 0.38 and 

10.3 were respectively measured for the three receptor subtypes. These results demonstrate 

the plasticity in parasitic nematode acetylcholine receptors.  

 

1 Graduate student and primary researcher 
2 Contributed to writing the manuscript 
3 Supervised and performed some of the molecular biology 
4 Corresponding author and Professor, Dept. Biomedical Sciences, Iowa State University. 
 

4.2 Author Summary 

Parasitic nematode infections of humans remain a public health concern in Latin America, 

Asia, and Africa. The drugs used in the treatment and prophylaxis of human nematode 

infections were first developed for use in animals. Although the anthelmintic levamisole is 

currently rarely used in humans, it nonetheless remains a relevant drug for treating parasitic 

nematode infections of animals in certain parts of the world. Levamisole targets the 

acetylcholine receptor in nematode somatic muscles, causing sustained depolarization and 

paralysis of the nematode which is actively removed from the hosts’ GI tract. Although five 
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receptor subunits are required to reconstitute a levamisole receptor of C. elegans, we have 

demonstrated that a minimum of two subunits can reconstitute a levamisole receptor of O. 

dentatum. Although there are some similarities between the C. elegans levamisole receptor 

and that of O. dentatum, we demonstrate important differences in the sensitivity to nicotine, 

the number of subunits that forms a functional receptor, the number of levamisole receptor 

subtypes and the calcium permeability of O. dentatum levamisole receptors. This 

demonstrates the plasticity of O. dentatum receptors and has implications for use of other 

AChR agonist/antagonist anthelmintics in levamisole resistant parasites. 

 

4.3 Introduction 

Soil transmitted helminth infections are a public health concern in the tropic and subtropic 

regions of Africa, South America, Caribbean and Asia where over a billion people are 

infected (Hotez et al., 2007; Hotez et al., 2008). These helminthes also affect plants, 

livestock and domestic animals, causing economic losses in billions of dollars per year 

(Brown et al., 2006). Anthelmintics are used in the prophylaxis of soil transmitted helminth 

infections but the growing problem of anthelmintic resistance poses a major threat to human 

health and global livestock productions (Prichard, 1999; Kaplan, 2004). These anthelmintics 

include the benzimidazoles which act on beta-tubulins, the macrocyclic lactones which act on 

glutamate-gated chloride channels, the cholinomimetics which act on nicotinic acetylcholine 

receptors, and the cyclooctadepsipeptide emodepside which acts on SLO-1 channels (Martin, 

1997; Wolstenholme and Rogers, 2005; Guest et al., 2007; Buxton et al., 2011). 

Cholinomimetic anthelmintics like levamisole and pyrantel act on nicotinic acetylcholine 

receptors located on the somatic muscle of parasitic nematodes, causing depolarization and 
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spastic paralysis of the worm (Aceves et al., 1970; Martin et al., 2005; Martin and Robertson, 

2007). 

Nicotinic acetylcholine receptors (nAChR) are prototypical members of the cys-loop ligand 

gated ion channel (LGIC) superfamily. Available evidence indicates that these receptors in 

parasitic nematodes are heterogeneous. In Ascaris suum, there are three subtypes of nAChR, 

N-, L- and B-subtypes (Robertson et al., 2002; Martin et al., 2004; Levandoski et al., 2005; 

Qian et al., 2006) and in Oesophagostomum dentatum, single channel recordings suggests the 

presence of four nAChR subtypes with the conductance states, G25, G35, G40 and G45 

(Robertson et al., 1999). G25, G35, G40 and G45 conductance states are present in the 

levamisole-sensitive (SENS) isolate of the parasite but in the levamisole-resistant (LEVR) 

isolate, the G35 subtype is absent. In pyrantel-resistant O. dentatum, all four channel 

subtypes are present but the overall numbers of these channels are reduced (Robertson et al., 

2000).    

Three essential subunit genes, unc-29, unc-38, unc-63 and two non-essential subunit genes, 

lev-1 and lev-8 make up the levamisole-sensitive nAChR in Caenorhabditis elegans (Lewis 

et al., 1980; Fleming et al., 1997; Richmond and Jorgensen, 1999; Culetto et al., 2004; 

Towers et al., 2005). The genes unc-50, unc-74 and ric-3 encode ancillary proteins required 

for AChR processing and assembly (Ben-Ami et al., 2005b; Haugstetter et al., 2005; 

Lansdell et al., 2005; Eimer et al., 2007; Millar, 2008). Boulin et al. (2008) reported that the 

5 subunit genes and 3 ancillary factors are required for the robust expression of functional  

Lev-nAChR in Xenopus oocytes. Furthermore, Boulin et al. (2011) reconstituted two 

pharmacological subtypes of Haemonchus contortus nAChR, a Pyr-nAChR and a Lev-

nAChR, with homologs of the C. elegans genes unc-29, acr-8, unc-38, unc-63, ric-3, unc-50 
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and unc-74. In contrast, Williamson et al. (2009) could reconstitute functional A. suum 

nAChR with only Asu-unc-29 and Asu-unc-38 without the requirement for any ancillary 

factors. These results suggest that there are differences in nAChRs between nematodes in 

different clades or in the same clade. Indeed, 11 distinct paralogous sequences of the unc-29 

gene have been discovered in the trichostrongylid parasites Haemonchus contortus, 

Teladorsagia circumcincta and Trichostrongylus colubriformis, showing the diversity in 

some parasitic nematode nAChR gene families (Neveu et al., 2010). 

In the present study, we used candidate gene approach and the Xenopus oocyte expression 

system to characterize the O. dentatum L-nAChR. We report reconstitution of four 

pharmacologically different receptor subtypes, suggesting these receptors in O. dentatum are 

more plastic than in C. elegans. Three of the receptors bound levamisole with low affinity 

but the receptor that bound levamisole with high affinity was most permeable to calcium.  

 

4.4 Materials and Methods 

4.4.1 Ethical Concerns 

All animal care and experimental procedures in this study were in strict accordance with 

guidelines of good animal practice defined by the Center France-Limousin ethical committee 

(France). Pig studies were performed under experimental agreement 6623 approved by the 

Veterinary Services (Direction des Services Vétérinaires) of Indre et Loire (France). 
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4.4.2 Accession numbers 

The accession numbers for cDNA and protein sequences mentioned in this article are C. 

elegans: UNC-29 NM_059998, UNC-38 NM_059071, UNC-63 NM_059132, ACR-8 

JF416644; H. contortus: Hco-unc-29.1 GU060980, Hco-unc-38 GU060984, Hco-unc-63a 

GU060985, Hco-acr-8 EU006785, Hco-unc-50 HQ116822, Hco-unc-74 HQ116821, Hco-

ric-3.1 HQ116823; O. dentatum: Ode-unc-29 not annotated yet, Ode-unc-38 GU256648, 

Ode-unc-63 HQ162136, Ode-acr-8 not annotated yet. 

 

4.4.3 Nematode Isolates 

These studies were carried out on the levamisole-sensitive (SENS) and levamisole-resistant 

(LEVR) isolates of O. dentatum as previously described (Varady et al., 1997). Large pigs 

were experimentally infected with 1000 infective larvae (L3s) and infection was monitored 

40 days later by fecal egg counts every 3 days. Levamisole susceptibility or resistance status 

of all isolates used in this study were checked in pairs of infected pigs, one treated with LEV 

at 7.5 mg/Kg and the other remaining untreated. The pigs were slaughtered after 80 days at 

the French National Institute for Agricultural Research (Nouzilly) abattoir and adult 

nematodes (males and females) of each isolate were collected from the large intestine and 

stored in RNA later (Qiagen®) at -80oC. 

 

4.4.4 Molecular Biology 

Preparation of total RNA, cDNA clonings and cRNA synthesis was carried out as previously 

described (Boulin et al., 2011). cRNA samples were subjected to electrophoresis on ethidium 
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bromide-stained 1 % denaturing gel to assess their purity and integrity before storing at -

80oC. 

 

4.4.5 Electrophysiological studies in oocytes 

Xenopus laevis ovaries were obtained from NASCO (Fort Atkinson, Wisconsin, USA) and 

defolliculated using 1 – 2 mg/ml collagenase type II and Ca2+-free OR2 (mM: NaCl 100, KCl 

2.5, HEPES 5, pH 7.5 with NaOH). Alternatively, defolliculated oocytes were purchased 

from Ecocyte Bioscience (Austin, Texas, USA). Oocyte microinjection was carried out as 

described in (Boulin et al., 2008). Equal amounts of the H. contortus ancillary factors ric-3, 

unc-50 and unc-74 were added to each mix. Microinjected oocytes were incubated at 19oC 

for 2 – 5 days. The oocytes were incubated in 200 µL of 100 µM BAPTA-AM for ~3 hours 

prior to recordings, unless stated otherwise. Recording and incubation solutions used are 

reported in (Boulin et al., 2008). Incubation solution was supplemented with Na pyruvate 2.5 

mM, penicillin 100 U/mL and streptomycin 100 µg/ml. Oocytes were voltage-clamped at -60 

mV with an Axoclamp 2B amplifier; all data were acquired on a desktop computer with 

Clampex 9.2.  

 

4.4.6 Data analysis 

Acquired data were analyzed with Clampfit 9.2 (Molecular Devices, Sunnyvale, CA, USA) 

and Graphpad Prism 5.0 software (San Diego, CA, USA). The response to 100 µM ACh was 

normalized to 100 % and the responses to the other agonists normalized to that of ACh. For 
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all dose-response relationships, the mean ± s.e of the responses is plotted. Dose-response data 

points were fitted with the Hill equation as described previously (Boulin et al., 2008). 

 

 

4.5 Results 

 

4.5.1 Identification of unc-29, acr-8, unc-38 and unc-63 homologs from O. dentatum 

We have identified four full-length cDNAs from O. dentatum that encode genes homologous 

to C. elegans unc-63, unc-38, unc-29 and acr-8. We cloned each subunit from both SENS 

(levamisole susceptible) and LEVR (levamisole resistant) strains of the parasite. The 

different AChR subunit sequences, accession numbers, characteristics and closest 

homologues in C.elegans and H. contortus are presented in Table 5.0. The O. dentatum 

AChR subunits cloned here are more closely related to the H. contortus homologues than the 

C. elegans homologues. The phylogenetic tree (Supplementary figure 4.6) shows the 

clustering of O. dentatum unc-29, acr-8, unc-38 and unc-63 with the C. elegans and H. 

contortus homologues.  

 

 

Table 5 Comparison of O. dentatum AChR subunits with the homologs of C. elegans and H. 
contortus 

Gene name Accession 

number 

Full-

length 

cDNA 

size (bp) 

Deduced 

protein 

seq. length  

% nucleotide identity % amino acid 

identity/similarity 

C. elegans H. contortus C. elegans H. contortus 
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Ode-unc-29 Yyyyy 1637 497 66 73 78/87 85/90 

Ode-unc-38 GU256648 1681 507 66 70 72/77 83/87 

Ode-unc-63 HQ162136 2265 507 67 80 77/84 92/95 

Ode-acr-8 Zzzzzzz 1851 538 62 77 66/93 80/97 

 

4.5.2 Four receptor subtypes reconstituted with four AChR subunit genes 

To express O. dentatum receptors in Xenopus oocytes, we started by investigating the 

minimum number of subunits required to reconstitute a functional receptor. We injected 

cRNAs of the O. dentatum AChR subunits unc-29, unc-38, unc-63 and acr-8 in 1:1 ratio of 

different two-subunit combinations. We added the H. contortus ancillary factors ric-3, unc-

50 and unc-74 to each mix. The oocytes injected with the 1:1 ratio of unc-29 : unc-63 

responded to ACh, pyrantel (Pyr), tribendimidine (Tbd), nicotine (Nic) and levamisole (Lev). 

None of the oocytes injected with the other two-subunit combinations responded to any of 

the agonists we tested. Even at 30 µM, pyrantel had the most potent agonist effects on this 

receptor subtype compared to 100 µM ACh (Fig. 4.1B). We therefore termed this receptor 

Ode-(29 – 63) pyrantel-sensitive nAChR (Pyr-nAChR). We tested the effect of each subunit 

on the receptor by adding one subunit cRNA at a time to this receptor mix. The effect of 

AChR subunit on altering receptor pharmacology has been demonstrated in both vertebrate 

neuronal AChRs (Luetje and Patrick, 1991) and nematode AChRs (Williamson et al., 2009; 

Boulin et al., 2011). 

Next, we injected a mix of Ode-(unc-29 – unc-38 - unc-63) plus the three ancillary factors. 

Oocytes injected with this new mix responded to all the agonists we tested except bephenium 

and thenium (Fig. 4.1D – F). Similar to the Pyr-nAChR Ode-(29 – 63) above, pyrantel was 
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the most potent agonist here. However in this mix, pyrantel and tribendimidine were 

equipotent at 30 µM. We termed this receptor Ode-(29 – 38 – 63) Pyr- and Tbd-sensitive 

receptor. 

When we added Ode-acr-8 to the Ode-(unc-29 – unc-63) receptor mix and injected this into 

the oocytes, we observed responses to all the agonists we tested including bephenium and 

thenium. This suggests that Ode-acr-8 introduces bephenium and thenium binding site(s). At 

the concentrations tested, ACh was more potent than the other agonists in this receptor 

subtype (Fig. 4.2A – C). We termed this receptor Ode-(29 – 8 – 63) nAChR. 

Last but not least, we injected all our subunits in a mix of Ode-(unc-29 – acr-8 – unc-38 – 

unc-63) plus the H. contortus ancillary factors. These reconstituted a receptor with 

levamisole as the most potent agonist (Fig. 4.2D – F). We termed this receptor Ode-(29 – 8 – 

38 – 63) Lev-nAChR.   
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Figure 4.1 Voltage-clamp of oocytes injected with O. dentatum nAChR subunit genes. 

(A) Representative traces showing the inward currents in oocytes injected with 1:1 Ode-unc-

29 and Ode-unc-63. We termed this receptor Ode-(29 - 63) Pyr-nAChR (B) Bar chart (mean 

± se) of agonists-elicited currents in the Ode-(29 - 63) Pyr-nAChR, (paired t-test, **p < 0.01, 

***p < 0.001). (C) Dose-response relationships for Pyr (◊, n = 6), Tbd (▲, n = 5) and ACh 

(●, n = 6) in the Ode-(29 - 63) Pyr-nAChR, (n = number of oocytes). (D) Representative 

current responses to ACh, Lev, Tbd, Pyr and Nic in oocytes injected with 1:1:1 Ode-unc-

29.y, Ode-unc-38 and Ode-unc-63. Pyr/Tbd were the most potent agonists in this Ode-(29 – 

38 - 63) Pyr/Tbd-nAChR  (E) Bar chart (mean ± s.e) of the currents elicited by the different 
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agonists in the Ode-(29 - 38 - 63) Pyr/Tbd-nAChR (paired t-test, **p < 0.01, ***p < 0.001). 

(F) Dose-response relationships for Pyr (◊, n = 6), Tbd (▲, n = 6) and ACh (●, n = 5) in the 

Ode-(29 - 38 - 63) Pyr/Tbd-nAChR. 
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4.5.3 The receptor subtypes are pharmacologically different 

We further characterized each of these four receptor subtypes with the cholinergic 

anthelmintics levamisole, bephenium, thenium, tribendimidine and the agonists ACh and 

nicotine. It is noteworthy to state here that all the receptor subtypes responded to nicotine, 

thus our decision to rightly call them nAChR. In contrast, the levamisole-sensitive AChR in 

C. elegans do not respond to nicotine; the nicotine-sensitive receptor is a homopentamer of 

ACR-16 (Touroutine et al., 2005). Contrary to the observations in H. contortus (Boulin et al., 

2011), the nicotine response in all four O. dentatum receptor subtypes is not insignificant; the 

smallest response was ~14.0 % of ACh response. In the Ode-(29 – 63) Pyr-nAChR, average 

pyrantel current amplitudes were >100 nA but <200 nA, although we occasionally recorded 

currents ~250 nA. Pyrantel currents were ~556 % of ACh currents (p < 0.001, n = 9, Fig. 

4.1A-B). We initially applied 100 µM pyrantel to the injected oocytes but we observed a 

prominent open channel block effect. We thus lowered the pyrantel concentration to 30 µM 

although we still observed an open channel block effect at this concentration. Pyrantel is 

known to cause open channel block at high concentrations (Harrow and Gration, 1985a). 

Tribendimidine, the cholinergic anthelmintic approved for human use in China, was the 

second potent agonist with average currents <100 nA (p < 0.01, n = 9, Fig. 1B). Levamisole, 

nicotine and ACh were the least potent agonists and we observed no response to bephenium 

or thenium. Thus, the order of agonist potency for this Ode-(29 – 63) Pyr-nAChR subtype 

was Pyr > Tbd > Nic ≈ ACh ≈ Lev. The EC50 for pyrantel, tribendimidine and ACh were 0.09 

µM, 3.9 µM and 72.4 µM respectively, indicating the relative potency of pyrantel over 

tribendimidine on this Ode-(29 – 63) receptor subtype.   
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The high and low affinities of AChRs to different agonists are due to the interaction between 

the α- and non-α-subunits (Arias, 1997), such that addition of another subunit(s) to the Ode-

(29 – 63) mix above may change the affinity to some of the agonists.  We observed that in 

the Ode-(29 – 38 – 63) Pyr-/Tbd-nAChR, pyrantel and tribendimidine were equally potent at 

30 µM. The average pyrantel and tribendimidine currents were ~200 nA, 23 % (p < 0.01, n = 

43, Fig. 4.1E) and 19 % (p > 0.05, n = 25, Fig. 4.1E) more than the response to ACh 

respectively. The nicotine and the levamisole currents were respectively 84 % (p < 0.001, n = 

30, Fig. 4.1E) and 75 % (p < 0.001, n = 41, Fig. 4.1E) less than the ACh currents. The order 

of agonist potency for this receptor subtype was altered to Pyr ≈ Tbd > ACh > Nic ≈ Lev. 

The dose-response curves in Fig. 4.1F shows that pyrantel was more potent than 

tribendimidine at lower doses (0.1 – 10 µM) but at 30 µM both were approximately 

equipotent. The EC50 for pyrantel, tribendimidine and ACh were 0.4 µM (n = 6), 2.2 µM (n = 

6) and 13.2 µM (n = 5) respectively. This receptor subtype suggests that tribendimidine could 

be used in cases where O. dentatum are resistant to levamisole. 

In the Ode-(29 – 8 – 63) nAChR, the most potent agonist ACh elicited currents of ~800 nA 

or sometimes >1 µA. Tribendimidine, levamisole and pyrantel currents were respectively 25 

% (p < 0.05, n = 24, Fig. 4.2B), 30 % (n < 0.01, n = 34, Fig. 4.2B) and 40 % (p < 0.001, n = 

36, Fig. 4.2B) less than the ACh-induced currents. Here, the least potent agonists were 

nicotine, bephenium and thenium with average currents < 20 % of the ACh currents (p < 

0.001, n = 27, Fig. 4.2B). The dose-response curves (Fig. 4.2C) suggest that levamisole and 

tribendimidine were partial agonists on this receptor subtype when compared with ACh. The 

EC50 for ACh, levamisole and tribendimidine were 3.5 µM, 2.2 µM and 0.8 µM respectively. 

Tribendimidine was more potent than ACh and levamisole at lower doses (0.1 – 3 µM) but 
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the top of the dose-response curves for tribendimidine and levamisole was below that of 

ACh. It is worth noting here that we used 30 µM tribendimidine as opposed to 100 µM 

levamisole. The pyrantel dose-response curve indicates that open channel block started after 

3 µM pyrantel before the full agonist effect around 30 µM. Here, the altered agonist potency 

series was ACh > Lev ≈ Tbd > Pyr >Nic ≈ The ≈ Bep. 

In the Ode-(29 – 8 – 38 – 63) Lev-nAChR, the current amplitudes of all the agonists were 

bigger than in the other three receptor subtypes. Average levamisole currents here were >1.5 

µA, ~30 % more than the currents produced by ACh (p < 0.001, n = 42, Fig. 4.2E). The 

second and third most potent agonists were ACh and tribendimidine, respectively. 

Tribendimidine currents were >0.6 µA, ~1/2 of the ACh currents (p < 0.001, n = 27, Fig. 

4.2E). The currents produced by bephenium, thenium and pyrantel were 23 % (p < 0.001, n = 

31, Fig. 4.2E), 22 % (p < 0.001, n = 25, Fig. 4.2E) and 19 % (p < 0.001, n = 21, Fig. 4.2E) of 

the ACh currents respectively. The agonist potency series here was Lev > ACh > Tbd > Bep 

≈ The ≈ Pyr > Nic. The EC50 values were 0.3, 3.1 and 4.2 µM for tribendimidine, levamisole 

and ACh respectively (Fig. 4.2F). Here, just as in the Ode-(29 – 8 – 63) nAChR, 

tribendimidine was more potent at the lower doses.  
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Figure 4.2 Voltage-clamp of oocytes injected with O. dentatum nAChR subunit genes. 

(A) Representative currents elicited by ACh, Lev, Tbd, Pyr, Nic, Bep and The in the oocytes 

injected with Ode-unc-29, Ode-acr-8 and Ode- unc-63. In this Ode-(29 – 8 – 63) nAChR, 

ACh was the most potent agonist. (B) Bar chart (mean ± se) of currents produced by the 

different agonists in the Ode-(29 – 8 – 63) nAChR, (paired t-test, *p < 0.05, **p < 0.01, 

***p < 0.001). (C) Dose-response relationships for ACh (●, n = 6), Lev (о, n = 6), Tbd (▲, n 

= 6) and Pyr (◊, n = 6) in the Ode-(29 – 8 – 63) nAChR. (D) Representative agonists-elicited 

currents in oocytes injected with Ode-unc-29, Ode-acr-8, Ode-unc-38 and Ode-unc-63. Here, 

levamisole was the most potent agonist. Therefore, we termed this receptor Ode-(29 – 8 – 38 
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– 63) Lev-nAChR. (E) Bar chart (mean ± se) of the normalized currents in the Ode-(29 – 8 – 

38 – 63) Lev-nAChR, (paired t-test, ***p < 0.001). (F) Dose-response relationships of Lev 

(о, n = 11), ACh (●, n = 18) and Tbd (▲, n = 6) in the Ode-(29 – 8 – 38 – 63) Lev-nAChR.  
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4.5.4 Pharmacological consequence of changing ratio of Ode-(29 – 63) 

We injected 5:1 and 1:5 ratios of Ode-unc-29 : Ode-unc-63 to find out if that alters the 

pharmacological profile of this receptor. We did not alter the amount of ancillary factors 

injected. Williamson et al. (2010) observed that changing the ratio of Asu-unc-29 and unc-38 

injected into oocytes changed the pharmacology of the A. suum receptors.  

In both 1:5 and 5:1 Ode-29 : Ode-63 injected oocytes, pyrantel remained the most potent 

agonist, followed by tribendimidine. In the 1:5 Ode-29 : Ode-63 injected oocytes, pyrantel 

current amplitudes were increased by >6-fold (~653 nA, p < 0.001, n = 17, data not 

displayed). The tribendimidine currents were also increased by ~6.6-fold (447 nA, p < 0.01, 

n = 17, data not displayed). Here, ACh was slightly more potent than nicotine and levamisole 

but the differences were not statistically significant. The agonist potency when we injected 5 

times more unc-63 than unc-29 was therefore Pyr > Tbd > ACh ≈ Nic ≈ Lev. The increase in 

current amplitude with this ratio of subunits is less likely to be due to variations in current 

amplitudes in different batches of oocytes. When we injected the 1:1 and 1:5 Ode-unc-29 : 

Ode-unc-63 in the same batch of oocytes, we still recorded currents of larger amplitude in the 

oocytes with a higher (5x) ratio of Ode-unc-63. 

In the 5:1 Ode-29 : Ode-63, nicotine and levamisole were slightly but significantly more 

potent than ACh (p < 0.05, data not displayed). The agonist potency series was slightly 

altered to Pyr > Tbd > Nic ≈ Lev > ACh. The current amplitudes in the 5:1 Ode-29 : Ode-63 

were increased by not more than 1.5-fold. In heteropentameric nicotinic receptors, agonist 

binding sites are formed between an α-subunit and a non-α-subunit (Arias, 1997, 2000). We 

therefore predicted that pyrantel-preferred binding site(s) may be formed between Ode-unc-

29 and Ode-unc-63 subunits with possible combinations of (Ode-unc-29)2(Ode-unc-63)3 and 
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(Ode-unc-29)3(Ode-unc-63)2. The (Ode-unc-29)2(Ode-unc-63)3 combination may 

predominate because we recorded currents of bigger amplitude in the 1:5 Ode-unc-29 : Ode-

unc-63 oocytes. 

  

4.5.5 ACh response differs among the receptor subtypes 

All four receptor subtypes we reconstituted responded to ACh but the current amplitudes 

differed among the subtypes. ACh is the main excitatory neurotransmitter in these 

nematodes. It is therefore expected that the receptor subtypes with bigger ACh current 

amplitudes may be physiologically relevant to the parasite. The Ode-(29 – 63) Pyr-nAChR 

gave the smallest response to 100 µM ACh, with average currents <50 nA. When we added 

Ode-unc-38 to the above mix, the currents elicited by ACh in the Ode-(29 – 38 – 63) Pyr-

/Tbd-nAChR increased ~10-fold. However, the currents elicited by pyrantel and 

tribendimidine in this subtype were increased by not more than ~2-fold. Further, we recorded 

ACh currents of ~800 nA or sometimes over 1 µA in the Ode-(29 – 8 – 63) nAChR subtype, 

after introducing Ode-acr-8 to the two-subunits mix. We therefore hypothesized that Ode-

unc-38 (α-subunit) or Ode-acr-8 (α-subunit) may interact with Ode-unc-29 (non-α-subunit) 

to introduce additional binding site(s) that binds ACh with a higher affinity and/or these 

subunits may interact with Ode-unc-63 (α-subunit) to increase ACh binding affinity at the 

Ode-unc-29 – unc-63 binding site. 

We recorded the biggest ACh currents in the mix containing all four receptor subunits. In this 

Ode-(29 – 8 – 38 – 63) Lev-nAChR, ACh elicited average currents >1.2 µA. Based purely on 
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the ACh current amplitudes, we speculate that the latter three receptor subtypes may be more 

physiologically relevant to the worm than the first receptor subtype.  

 

4.5.6 Calcium permeability of the receptor subtypes differ 

We measured the calcium permeability of three of the receptor subtypes, Ode-(29 – 38 – 63) 

Pyr-/Tbd-nAChR, Ode-(29 – 8 – 63) nAChR and Ode-(29 – 8 – 38 – 63) Lev-nAChR in 

BAPTA pre-soaked oocytes. The calcium permeabilities of different vertebrate neuronal and 

muscle AChRs have been well characterized, and these have an implication for the 

physiological function of the receptors. Generally, neuronal AChRs are more permeable to 

Ca2+ than muscle AChRs. Ca2+ entry through these receptors mediate a number of Ca2+-

dependent cellular processes, such as neurotransmitter release and synaptic plasticity (Fucile, 

2004). 

ACh-evoked currents in the three receptor subtypes were potentiated by increasing the 

external Ca2+ from 1 mM to 10 mM (Fig. 4.3A – C); this effect was voltage-dependent. 

Increasing or adding Ca2+ in the external solution should result in a positive shift in the 

reversal potential if Ca2+ is a permeant ion (Vernino et al., 1992). We observed a shift to the 

right in the reversal potential with the increase in external Ca2+ for the three receptor 

subtypes, suggesting that Ca2+ is a current-carrier in these receptor subtypes. The voltage-

dependent increase in ACh-elicited currents with increasing external Ca2+ was more 

prominent in the Ode-(29 – 8 – 38 – 63) Lev-nAChR than in the other two receptor subtypes. 

In this receptor subtype the reversal potential shift was bigger, from -12.99 to 2.97 (Fig. 4.3A 

insert). Using the Goldman Hodgkin Katz constant field assumptions, we calculated this 
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change in reversal potential to correspond to Ca2+ permeability ratio PCa/PNa of 10.26. The 

reversal potential shifts in the other two receptor subtypes were smaller. In Ode-(29 – 38 – 

63) Pyr-/Tbd-nAChR the reversal potential shifted from 8.81 to 10.07, corresponding to 

permeability ratio PCa/PNa of 0.38.  A reversal potential shift from -4.35 to -2.63 was 

recorded in Ode-(29 – 8 – 63) nAChR, which corresponds to a permeability ratio PCa/PNa of 

0.38. The Ode-(29 – 8 – 38 – 63) Lev-nAChR appears to be more permeable to Ca2+ than the 

other two receptor subtypes and may play a more prominent role in modulating intracellular 

Ca2+ levels. 

In addition to Ca2+ being a permeant ion in vertebrate neuronal nicotinic receptors, Ca2+ 

binds to the external side of the receptors and exerts a positive allosteric effect (Mulle et al., 

1992b; Vernino et al., 1992). It is also possible that a positive allosteric site for Ca2+ exists in 

the Ode-(29 – 8 – 38 – 63) Lev-nAChR that is lacking in the other two receptor subtypes. 
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Figure 4.3 Ca2+-permeability of three of the O. dentatum receptor subtypes 

(A) Current-Voltage plot for oocytes injected with Ode-(29 – 8 – 38 – 63) in 1 mM and 10 

mM Ca2+ recording solutions. Insert: Magnified view of current-voltage plot from -20 mV to 

+40 mV showing the Erev in 1 mM and 10 mM extracellular Ca2+. (B) Current-Voltage plot 

for oocytes injected with Ode-(29 – 8 – 63), showing the change in current with voltage in 1 

mM and 10 mM Ca2+ recording solutions. Insert: Magnified view of current-voltage plot 
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from -20 mV to +40 mV showing the Erev in 1 mM and 10 mM extracellular Ca2+. (C) 

Current-Voltage plot for oocytes injected with Ode-(29 – 38 – 63) showing the current 

changes in 1 mM and 10 mM Ca2+ recording solution under different voltages. Insert: 

Magnified view of current-voltage plot from -20 mV to +40 mV showing the Erev in 1 mM 

and 10 mM extracellular Ca2+.     
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4.5.7 Derquantel distinguishes receptor subtypes in Ode-(29 – 8 – 38 – 63) Lev-nAChR 

We hypothesized that when cRNA corresponding to the four nAChR subunit genes were 

injected to form the Ode-(29 – 8 – 38 – 63) Lev-nAChR, other receptor subtypes or 

combinations may also be formed. To test this hypothesis, we used 100 µM levamisole and 

30 µM pyrantel to elicit inward currents in oocytes injected with a mix of the four receptor 

subunits and three ancillary factors. Derquantel was used to antagonize the responses 

produced by these two agonists (Fig. 4.4). Derquantel, or 2-deoxy-paraherquamide, is a 

semisynthetic derivative of paraherquamide. It has recently been marketed as Startect®, a 

combination of derquantel and abamectin.  We then analyzed the antagonism produced by 

derquantel using the simple competitive model and nonlinear regression to estimate the pA2 

of levamisole and pyrantel (Martin et al., 2003). If levamisole and pyrantel acted on one and 

the same receptor subtype, then their pA2 values will not differ. The pA2 for levamisole was 

6.8, different from the pyrantel pA2 value of 8.4. The different pA2 values indicate that the 

antagonism of levamisole by derquantel is different from the antagonism of pyrantel by 

derquantel. These suggest there is more than one receptor subtype formed in the Ode-(29 – 8 

– 38 – 63) Lev-nAChR, and that levamisole and pyrantel have selective actions on the 

different receptor subtypes.  

 

4.5.8 Requirement for the three ancillary factors is not absolute  

According to Boulin et al. (2008, 2011), the ancillary factors RIC-3, UNC-50 and UNC-74 

were absolutely required to reconstitute C. elegans and H. contortus receptors in oocytes. 

Removal of any or all of these factors either significantly decreased the amplitude or 
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completely abolished the reconstituted receptors. We tested the requirement for these 

ancillary proteins by sequentially removing each ancillary protein cRNA from the Ode-(29 – 

8 – 38 – 63) Lev-nAChR mix.  

When we injected this mix without the UNC-74 cRNA, the oocytes responded robustly to 

levamisole and ACh with currents greater than 1 µA. However, the levamisole current was 

reduced to just 6 % more than the ACh current (n = 11). We still observed responses to the 

other agonists, although the current amplitudes were reduced. UNC-74 appears to be required 

for the functional expression of Lev-AChRs. Its removal therefore reduced the Lev current 

amplitudes to near ACh current amplitudes. ACh currents here were ~91 % (Supplementary 

Fig. 4.7) of the ACh currents obtained with all the cRNAs, suggesting that robust functional 

receptors could be reconstituted without UNC-74. RIC-3 is an endoplasmic reticulum 

resident protein that acts as a chaperone for nAChR receptor maturation. RIC-3 enhances 

functional expression of some AChRs whilst inhibiting expression of other AChRs expressed 

in mammalian cell lines or Xenopus oocytes (Lansdell et al., 2005; Millar, 2008; Ben-Ami et 

al., 2009b). RIC-3 stabilizes receptor intermediates and promotes maturation of receptors 

through nAChR subunit-specific interactions (Ben-Ami et al., 2005b). When we removed 

RIC-3 cRNA from the mix, the levamisole and ACh currents were reduced by < 60 % of the 

corresponding currents obtained with all the cRNAs. Here, the ACh currents were ~42 % of 

the ACh currents obtained with the complete set of cRNAs (Supplementary Fig. 4.7).  

The most striking decrease in current amplitudes was obtained when UNC-50 cRNA was 

removed from the mix. The ACh current amplitude obtained here was <20 % of the ACh 

current amplitude obtained with the complete set of cRNAs (Supplementary Fig. 4.7). UNC-

50 is a Golgi resident protein that is required to prevent some AChR types from being 
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trafficked to and degraded by the lysosomal system (Eimer et al., 2007). In the absence of 

injected UNC-50 cRNA, it is reasonable to postulate that only a few synthesized receptors 

make it to the cell membrane. Removal of all the ancillary factors did not yield any 

measurable currents, demonstrating the requirement for at least one of these ancillary 

proteins to reconstitute robust functional receptors. We have showed therefore that unlike in 

C. elegans, robust functional O. dentatum receptors can be reconstituted when one of these 

three ancillary factors is omitted. 
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Figure 4.4 Derquantel as an antagonist of levamisole and pyrantel currents in Ode-(29 – 8 – 

38 – 63) Lev-nAChR 

(A) Antagonism of 100 µM levamisole responses by 0.1 – 1.0 µM derquantel. Note that 

derquantel produces dose-dependent effects but the top of the curves remain essentially 

unchanged, suggesting competitive antagonism. (B) Antagonism of 30 µM pyrantel 

responses by 0.03 – 0.3 µM derquantel. Note that the concentrations of derquantel here are 

lower but the antagonism is noncompetitive.  
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4.6 Discussion 

4.6.1 Heterogeneity in parasitic nematode acetylcholine receptors 

We have reported here the reconstitution of four subtypes of levamisole-sensitive AChR in 

oocytes using just four O. dentatum AChR subunits. The receptors differed in their 

pharmacology, subunit composition and calcium permeability. Interestingly, single channel 

recordings in the worm demonstrate levamisole- and pyrantel-activated receptors with four 

conductance states (Martin et al., 1997; Robertson et al., 1999, 2000). Single channel 

recordings and reconstitution studies in parasitic nematodes have demonstrated a 

heterogenous population of levamisole-sensitive AChRs (Robertson and Martin, 1993b; Qian 

et al., 2006; Williamson et al., 2009; Boulin et al., 2011). Williamson et al (2010) observed 

that by changing the ratio of just two A. suum AChR subunits injected into Xenopus oocytes, 

the pharmacology of the reconstituted receptors could be altered. 

The heterogeneity of O. dentatum nicotinic acetylcholine receptors expressed in Xenopus 

oocytes or recorded directly from the worm is reminiscent of the heterogeneity of 

mammalian neuronal nicotinic acetylcholine receptors in sympathetic neurons (Mathie et al., 

1991) or expressed in Xenopus oocytes (Papke and Heinemann, 1991; Zwart and Vijverberg, 

1998). Mammalian α4β2 neuronal receptors expressed in oocytes at varying ratios of both 

subunits revealed four pharmacologically distinct receptor subtypes with stoichiometries not 

restricted to 2α:3β (Zwart and Vijverberg, 1998). Furthermore, replacing β4 with β2 in α3β4 

injected into oocytes gave rise to channels with different conductance states, shorter open 

times and reduced tendency to re-open after closing (Papke and Heinemann, 1991), 

emphasizing the influence of different subunits on the pharmacology and 
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electrophysiological properties of these receptors. We have demonstrated here that just two 

subunits can form functional receptors in Xenopus oocytes, and addition of other subunits 

changes the pharmacology of these receptors. These heterogeneous, functional O. dentatum 

AChRs reconstituted in oocytes suggests that differential association of α and β-subunit is a 

mechanism by which multiple receptors are formed. The developmental regulation of the 

properties and distribution of AChRs (Schuetze and Role, 1987) may also account for the 

pharmacologically different receptor subtypes reconstituted here. 

 

4.6.2 O. dentatum Lev-AChR differ from the C. elegans Lev-AChR 

In C. elegans, five AChR subunit genes plus three ancillary factors were required to 

reconstitute a levamisole-sensitive AChR (Boulin et al., 2008). ACh was more potent than 

levamisole on this receptor type and most importantly, this Lev-AChR did not respond to 

nicotine. The C. elegans nicotine-sensitive receptor (N-AChR) is a homopentamer of ACR-

16 subunits. 

We were able to reconstitute functional O. dentatum AChRs with just two AChR subunit 

genes and the 3 ancillary factors. All four O. dentatum AChR subtypes we reconstituted 

responded to nicotine as well as levamisole. In 3 of the 4 receptor subtypes, ACh was more 

potent than levamisole but in the fourth receptor subtype with all 4 Ode-AChR subunits, 

levamisole was the most potent agonist. Unlike in the C. elegans Lev-AChR, we 

reconstituted two receptor subtypes with pyrantel as the most potent agonist. 

According to Boulin et al. (Boulin et al., 2008), removal of the ancillary factors UNC-50 or 

UNC-74 from the mix resulted in over 90 % reduction of ACh currents when compared with 
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the mix containing all 3 ancillary factors. Removal of RIC-3 gave ACh currents that were 

slightly larger and more variable, although the ACh currents here were <40% of the currents 

obtained with all 3 ancillary factors. In contrast, the reduction in ACh currents when UNC-74 

was removed from the O. dentatum receptor mix was <10% when compared to the mix 

containing the UNC-74 cRNA. Removal of UNC-74 from the O. dentatum mix however 

reduced the levamisole current amplitudes to just ~6% greater than the ACh current 

amplitudes, in agreement with UNC-74 requirement for Lev-AChR reconstitution. 

Furthermore, removal of RIC-3 gave ACh currents that were ~42 % of the currents obtained 

with all cRNAs. These results strongly demonstrate some differences in the requirement for 

ancillary proteins. 

 

4.6.3 Physiological function of the O. dentatum receptor subtypes 

Cholinergic receptors are permeable to and modulated by calcium. Neuronal nicotinic 

acetylcholine receptors have been shown to be more permeable to calcium than muscle 

receptors (Vernino et al., 1992). Changes in extracellular Ca2+ modulate neuronal nAChR in 

a dose-dependent manner. Ca2+ permeability through nAChRs modulates the excitability of 

neurons, participates in second-messenger cascades (Vijayaraghavan et al., 1995; Khiroug et 

al., 1998), controls neurotransmitter release from presynaptic terminals (Guo et al., 1998; Li 

et al., 1998), and regulates coexpressed postsynaptic receptors (Mulle et al., 1992a). Ca2+ 

entry through synaptic nAChRs could activate Ca2+-dependent channels, such as Ca2+-

dependent K+ channel, leading to modulation of neuronal excitability (Tokimasa and North, 

1984; Vernino et al., 1992). 
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We have demonstrated here that the levamisole-sensitive acetylcholine receptors of O. 

dentatum are permeable to Ca2+. The Ode-(29 – 8 –38 – 63) Lev-nAChR subtype was the 

most permeable to Ca2+, with PCa/PNa of 10.3. This high Ca2+ permeability is comparable to 

that of chick α-bungarotoxin-sensitive α7 (PCa/PNa = 10)(Bertrand et al., 1993), and rat α-

bungarotoxin-sensitive α9 (PCa/PNa ~ 9)(Katz et al., 2000) or α9α10 (PCa/PNa = 9)(Weisstaub 

et al., 2002) expressed in oocytes; it is significantly higher than the PCa/PNa recorded for C. 

elegans levamisole receptor (Boulin et al., 2008). In terms of Ca2+-permeability, this Ode-(29 

– 8 –38 – 63) Lev-nAChR channel subtype resembles a neuronal nAChR. Both Ode-(29 – 38 

- 63) Pyr/Tbd-nAChR and Ode-(29 – 8 – 63) nAChR channel subtypes had Ca2+ 

permeabilities (PCa/PNa = 0.38) slightly lower than that of C. elegans muscle levamisole 

receptor expressed in oocytes (PCa/PNa = 0.6)(Boulin et al., 2008) and lower than the Ode-(29 

– 8 –38 – 63) Lev-nAChR channel subtype. 

Ca2+ is known to modulate acetylcholine receptors by acting as permeant ions and/or binding 

to an allosteric site on the extracellular face of the channel (Chang and Neumann, 1976; 

Vernino et al., 1992). Chelation of intracellular Ca2+ by BAPTA makes it less likely that Ca2+ 

is modulating the O. dentatum levamisole receptor channels from an intracellular side. 

However, second-messenger cascades closely associated with the intracellular side of the 

levamisole receptor channels cannot be precluded as a possible mechanism of modulating 

these channels. The subunits that make up these receptors are also known to affect their Ca2+ 

permeability. For example in muscle nAChRs, expression of the epsilon (ε) subunit increases 

the relative Ca2+-permeability (Cens et al., 1997). Perhaps the high Ca2+-permeability of the 

Ode-(29 – 8 –38 – 63) Lev-nAChR channel subtype is due to the presence of an additional α-
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subunit that is absent in either Ode-(29 – 38 - 63) Pyr/Tbd-nAChR or Ode-(29 – 8 – 63) 

nAChR channel subtypes.                                                                                                       

 

4.7 Conclusion 

We have demonstrated the plasticity of levamisole-sensitive acetylcholine receptors in 

Oesophagostomum dentatum. Four receptor subtypes with different pharmacological 

properties were reconstituted with four subunits. The calcium permeability of three of the 

four receptor subtypes has an implication for the physiological function of these receptors. 
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4.9 Supplementary information 

4.9.1 Truncated Ode-acr-8 from LEVR isolate 

 
In addition to the Ode-acr-8 that we cloned from both SENS and LEVR isolates of O. 

dentatum, we also cloned a truncated Ode-acr-8 from the LEVR isolate. This truncated acr-

8, Ode-acr-8R, is missing about ten amino acids in the transmembrane domain 1 (TM1) and 

all the amino acids in transmembrane domain 2 (TM2). Figure 4.5 below illustrates the 

amino acids lost in the TM1 and TM2 domains. 



www.manaraa.com

 144 

 

4.9.2 Ode-acr-8R reconstitutes Pyr/Tbd-nAChR 

Because the truncated Ode-acr-8R is missing all the amino acids in the pore-lining TM2 

domain, it is predicted here that it may not form part of the mature, functional receptor and it 

may affect the pharmacology of the receptor. TM2 from each subunit is predicted to form the 

lining of the ion channel pore (Hung et al., 2005; Bafna et al., 2008). If that was true, then 

replacing the full-length acr-8 with the truncated form is predicted to reconstitute a receptor 

that is preferentially more sensitive to pyrantel and tribendimidine, similar to the receptor 

reconstituted without the full-length acr-8S. We tested this hypothesis by injecting this 

truncated acr-8R in the mix Ode-unc-29 – unc-38 – acr-8R – unc-63 into oocytes. This 

receptor responded to ACh, pyrantel, tribendimidine, levamisole and nicotine but did not 

respond to bephenium or thenium. Similar to the Ode-(unc-29 – unc-38 – unc-63) Pyr/Tbd-

nAChR described above, pyrantel and tribendimidine were the most potent agonists. 

However, the average pyrantel and tribendimidine currents were increased about 3-fold in 

this receptor. The average pyrantel and tribendimidine currents were respectively 637 nA and 

636 nA (data not displayed). Also, the pyrantel and tribendimidine currents were both 54.0 % 

more than the ACh currents (for Pyr, p < 0.05, n = 16; for Tbd, p < 0.001, n = 16). Replacing 

the full-length acr-8S with the truncated form therefore reconstitutes a Pyr- and Tbd-sensitive 

receptor. This receptor type may likely exist in the LEVR O. dentatum parasites. 

Furthermore, the current responses to ACh, nicotine and levamisole were increased by 2.5-

fold, 4.0-fold and 3.4-fold respectively when compared with the Ode-(unc-29 – unc-38 – 

unc-63) receptor above. 
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Figure 4.5 Ode-acr-8R showing the truncation in TM1 and TM2 domains. 

All the amino acids that make up the TM2 domain are truncated, in addition to the last ~10 

amino acids in the TM1. TM2 is predicted to line the pore of the ion channel receptor. 
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Figure 4.6 Phylogenetic comparisons of the O. dentatum AChR subunits with the H. 

contortus & C. elegans homologues. Neighbour joining (NJ), HKY substitution model were 

used in constructing the tree. 
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Figure 4.7 Effect of the H. contortus ancillary factors on ACh current responses in the Ode-

(29 – 8 – 38 – 63) Lev-nAChR  
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4.9.3 Ca2+-permeability measurements 

For these set of experiments, we increased external Ca2+ in the recording solution from 1 mM 

to 10 mM without changing the concentration of the other ions. We used the GHK equation 

to calculate the permeability ratio, PCa/PNa. Due to BAPTA treatment before recordings, we 

assumed the internal [Ca2+] to be negligible; we also assumed permeability to Na and K, PNa 

and PK, are equal. 

 

Table 6.0 Primers used for the PCR and cloning of O. dentatum AChR subunits 

Gene name Primer name Primer sequence 

  Ode-unc-29   F-Hind3 AAAAAGCTTATGCGTCTCGAACCGTTACTTC 
   R-Apa1 TTTGGGCCCTAAACCCGTACAGTCATAAAACAAT 
  Ode-unc-38   F-Xho1 AAACTCGAGATAGCTGGTTGCAAGTGCGTATT 
   R-Apa1 TTTGGGCCCTCTCAACAAAATTGGCCTAATATAC 
  Ode-unc-63   F-Xho1 AAACTCGAGATGCTGACGCGACAAGTGTTC 
   R-Apa1 TTTGGGCCCTACCCAGCCGGCTGCTCGC 
  Ode-acr-8   F-Hind3 AAACTCGAGCTTGGCTAGCTTAAAACTAAGATT 
   R-Apa1 TTTGGGCCCAACCATAATACTATACATATCTCAGA 
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CHAPTER 5 GENERAL DISCUSSION 

Most of the anthelmintics used in the prophylaxis of parasitic nematode infections act on 

nematode ion channels. These include the cholinergic agonists/antagonists, the avermectins 

and the milbemycins. The mainstay anthelmintics include the benzimidazoles (BZs), 

cholinergic agonists/antagonists, and the macrocyclic lactones. However, there are reports of 

resistance to some of the mainstay anthelmintics and this has increased the need to 

understand the mechanisms of resistance and in order to design better drugs that have 

‘resistance-busting’ properties. 

Emodepside is a member of the cyclooctadepsipeptide family that has a novel mechanism of 

action. Both emodepside and the parent compound, PF1022A, are effective against parasitic 

nematodes that are resistant to some of the mainstay anthelmintics. Earlier studies using the 

free-living non-parasitic nematode, C. elegans implicated the voltage-activated, calcium-

dependent potassium channel, SLO-1 (also known as BK or maxi-K channel) and the 

latrophilin-like receptor, LAT-1/LAT-2 as emodepside/PF1022A target sites. We have 

showed for the first time the effects of emodepside on voltage-activated currents in a 

parasitic nematode, A. suum. We have demonstrated the potentiating effect of emodepside on 

voltage-activated, calcium-dependent K channels. This effect of emodepside is mediated by 

NO and/or protein kinases (PKC). We have also demonstrated that SLO-1 and LAT-1 are 

expressed in A. suum muscle flap. Emodepside has selective action on the parasites SLO-1; it 

is ~100 times less selective for the vertebrate receptor, KCNMA/KCNMB (Welz et al., 

2011). There is reason to propose that emodepside may be effective against filarial worms, 

such as Onchocerca volvulus that causes river blindness in most parts of Africa and Asia 

(Boussinesq, 2008). In fact, according to the World Health Organization (WHO) African 
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Programme for Onchocerciasis Control (APOC), emodepside and monepantel are two 

potential drugs that will be evaluated for control of these parasites (WHO, 2009).  

Recents reports have resurrected the hypothesis that one of the target sites for emodepside is 

the GABA receptor in C. elegans (2011 WAAVP conference communication). An earlier 

report by Chen et al. (1996) suggested that the parent compound of emodepside, PF1022A, 

bound to the GABA receptor in Ascaris. However, subsequent researchers observed that 

emodepside action on Ascaris suum membrane potential does not mimick that of GABA, 

raising doubts about the GABA receptor contributing to emodepside effects (Willson et al., 

2003). What is presently not in doubt is the fact that SLO-1 is a major target receptor for 

emodepside. 

On the other hand, levamisole is an old but still ‘relevant’ anthelmintic with well-

documented reports of resistance in different parasitic nematodes. Levamisole remains 

‘relevant’ because in countries (for example, Argentina and Uruguay) where there is 

resistance to ivermectin and benzimidazoles, it is an affordable anthelmintic alternative. In 

addition, levamisole has increased our understanding of the acetylcholine receptors in 

nematodes. Mutagenesis screens in C. elegans that uncovered levamisole-resistant genes 

(Lewis et al., 1980; Lewis et al., 1987) and subsequent reconstitution experiments (Fleming 

et al., 1997; Culetto et al., 2004; Boulin et al., 2008), as well as single-channel recordings 

have tremendously impacted our knowledge about levamisole receptors of nematodes. We 

have demonstrated here that in the pig nodular worm Oesophagostomum dentatum, four 

functional levamisole-sensitive receptor subtypes can be reconstituted in Xenopus oocytes 

with four subunit genes. Coincidentally, single-channel recordings with levamisole and 

pyrantel in the nodular worm demonstrate the presence of four conductance states of the 
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nicotinic receptors (Robertson et al., 1999, 2000). We have characterized the receptors and 

showed their pharmacological differences, as well as different calcium permeabilities. Our 

results indicate that there are some AChR receptor subtypes in parasitic nematodes that 

remain to be explored as targets for anthelmintic drugs. The receptor subtypes we have 

reconstituted here suggest that there may be tissue-specific expression of nicotinic receptors 

in nematodes, as well as life-stage-specific expression of some of these receptors. In fact, 

there is precedence for both tissue-specific expression and developmental regulation of 

nicotinic receptors in vertebrates (Schuetze and Role, 1987; Millar, 2003) and nematodes 

(Fleming et al., 1997; Culetto et al., 2004; Towers et al., 2005).  

This PhD research demonstrates that there are attractive targets for new anthelmintics in 

parasitic nematodes that are underexplored/underutilized (voltage-activated K+ channels). 

Even for some nematode ion channels that are targeted by existing anthelmintics, there are 

subtypes that can be explored to increase the efficacy of these anthelmintics. Resistance to 

anthelmintics is thus not an insurmountable problem in parasitic nematodes. 

 

Future directions 

There are a number of experiments that can still be done to increase our understanding of the 

mechanism of action of emodepside in parasitic nematodes and to characterize the O. 

dentatum levamisole receptors. First, the cloning, expression and characterization of Asu-slo-

1 and/or Asu-lat-1 with emodepside and other pharmacological compounds will be a great 

way to show whether or not emodepside has a direct effect on these ion channels. To show if 

intracellular NO is affected in any way be emodepside, the Greiss test can be used to measure 
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[NO]i in A. suum muscle flap in response to ACh. A similar assay can be used to check for 

the role of protein kinases, especially PKC in the effect of emodepside, for example, by 

measuring diacylglyerol (DAG) in A. suum by using fluorescent assays. 

Although the three ancillary proteins, RIC-3, UNC-50 and UNC-74 are evolutionarily 

conserved, there are species dependent effects of these ancillary factors. In place of the H. 

contortus ancillary factors, one can clone the homologs of O. dentatum to see their effect on 

the pharmacology of the levamisole receptors. Although LEV-1 cloned from the 

trichostrongylid parasites appears to lack a signal peptide (Neveu et al., 2010; Boulin et al., 

2011), raising questions about their involvement in forming part of the levamisole receptor in 

these parasites, Cel-lev-1 forms part of the levamisole receptor. Cloning the Ode-lev-1 and 

adding it to the receptor mixes will show the effect of this levamisole receptor subunit on the 

pharmacology of the receptor subtypes. 
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APPENDIX A Emodepside and SLO-1 potassium channels: A review 

From paper published in Experimental Parasitology (2011) 

RJ Martin2, 3, SK Buxton3, C Neveu3, CL Charvet3, AP Robertson3 

 

A1.0 Abstract 

Nematode parasites infect humans and domestic animals; treatment and prophylaxis require 

anthelmintic drugs because vaccination and sanitation is limited. Emodepside is a more 

recently introduced cyclooctadepsipeptide drug that has actions against GI nematodes, 

lungworm, and microfilaria. It has a novel mode of action which breaks resistance to the 

classical anthelmintics (benzimidazoles, macrocyclic lactones and cholinergic agonists). Here 

we review studies on its mode of action which suggest that it acts to inhibit neuronal and 

muscle activity of nematodes by increasing the opening of calcium-activated potassium 

(SLO-1) channels. 

1 Reprinted with permission of Experimental Biology (2011), 
doi:10.1016/j.exppara.2011.08.012 
2 Corresponding author and Professor, Dept. Biomedical Sciences, Iowa State University 
3 Contributed in writing the manuscript 
 

A2.0 Introduction 

Parasitic nematode infections place a heavy burden on both humans and animals. It is 

estimated that the global prevalence of parasitic nematode infections in humans is over two 

billion (de Silva et al., 2003). These infections are debilitating, produce lost productivity, 

mental impairment, and poor growth and contribute to poverty. The incidence of human 

helminthiasis is higher in warmer, wetter areas where poor sanitation makes the spread of 
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nematode parasite infections all too easy. In hot dry or very cold climates, the spread of the 

helminth infection is much slower even if sanitation is limited, because the free living 

intermediate stages do not survive well. In domestic animals, nematode parasites cause 

production loss, welfare issues and reduce the food supply. In the absence of effective 

vaccines and good sanitation to prevent the spread of these parasitic infections, anthelmintic 

drugs are used for both treatment and prophylaxis in humans and animals. Disturbingly, there 

are reports of growing resistance to the main groups of anthelmintic drugs in both man and 

animals. There is evidence of resistance to the benzimidazoles (albendazole), nicotinic 

agonists (levamisole/pyrantel) and macrocyclic lactones (ivermectin) in domestic animals 

(Wolstenholme et al., 2004) and concerns in humans (Geary et al., 2009). Recently, novel 

‘resistance- busting’ anthelmintics (emodepside, a cyclooctadepsipeptide; monepantel, an 

amino-acetonitrile derivative, and derquantel, a paraherquamide derivative) have been 

developed. The need for these new anthelmintics and ways to combat resistance to the 

currently available anthelmintics is urgent. Here we review recent information on the mode 

of action of emodepside with the intention that this information will facilitate understanding 

and development of the drug, and perhaps development of additional compounds. 

 

A3.0 Spectrum of action 

Sasaki et al. (1992) described the isolation of the cyclooctadepsipeptide PF1022A from 

cultured Mycelia sterilia, a fungus found on leaves of a flowering shrub (Camellia japonica). 

Emodepside (Fig. 5.0A) is a semisynthetic analogue of PF1022A that is produced by adding 

two morpholine rings to the para-position of the two D-phenyllactic acids (Harder et al., 
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2005) in order to enhance pharmacokinetic properties. Emodepside or PF1022A are effective 

against: gastro-intestinal nematodes of mice, rats, chickens, sheep, cattle, horse, dogs and 

cats and Trichonella spiralis (Martin et al., 1996a; Harder et al., 2003); and pre-adult stages 

of the filariae, Acanthocheilonema viteae, Brugia malayi, and Litomosoides sigmodontis. The 

effects against the adult stages of filaria are species dependent; there is little effect of 

emodepside against adult B. malayi (Harder et al., 2003). 

 

A3.1 Different mode of Action 

Emodepside selectively inhibits body muscle contraction of nematodes (Terada, 1992; 

Willson et al., 2003). Emodepside is effective against nematode isolates that have developed 

resistance to drugs from the major classes of anthelmintic (Samson-Himmelstjerna von et al., 

2005), namely: ivermectin (an allosteric modulator of GluCl channels, (Pemberton et al., 

2001)), levamisole (a nematode selective nAChR agonist, Qian et al., 2006; Qian et al., 

2008) and febantel (a selective ligand for nematode b-tubulin, (Miro et al., 2006)). Because 

emodepside remains effective against resistant isolates, it suggests that emodepside has a 

different mode of action. 

 

A3.2 Does not act as a GABA agonist or nicotinic antagonist 

The earliest studies on the mechanisms of action of the cyclooctadepsipeptides used 

PF1022A. PF1022A seemed to exert its anthelmintic action on either nematode nerve or 

muscle rather than on its energy metabolism; low concentrations of PF1022A (<1 µM) 

inhibited the motility of the nematode parasite, Angiostrongylus cantonensis (Terada, 1992). 
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Although it was reported (Chen et al., 1996) that PF1022A bound to GABA receptors of 

Ascaris suum muscle, suggesting a direct effect on nematode GABA receptors, direct 

electrophysiological recording from A. suum muscle found that PF1022A did not act like 

GABA, nor did it act as a cholinergic antagonist (Martin et al., 1996). Emodepside does not 

produce an increase in the muscle membrane conductance like GABA or piperazine (Martin, 

1982) again showing that these compounds do not act as GABA agonists. Another possibility 

(GeBner et al., 1996) was that PF1022A is an ionophore because PF1022, PF1022-001 

(antipode of PF1022A), valinomycin, enniatin A1 and beauvericin all have ionophore 

activities, and may increase bilayer conductivity to monovalent ions (Na+, Li+, K+ and Cs+). 

However, only PF1022A not PF1022-001 (the antipode), had a potent paralytic effect on A. 

suum, suggesting that the selective anthelmintic effects of PF1022A was not due to any ion-

carrier activity. 
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Figure 5.0 Summary diagram of emodepside structure, Slo-1 subunit and a model of the 

mode of action of emodepside on nematode body muscle.  

(A) Emodepside (molecular formula C60H90N6O14 molecular weight 1119.4). (B) Diagram of 

transmembrane structure of one Slo-1 subunit; each Slo-1 K+ channel is made up of 4 of these 

subunits. Emodepside may act in part presynaptically on neurons (C) and in part on body 
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muscle (D). Emodepside may act directly on SLO-1 K+ channels in the muscle or neurons (1) 

or indirectly by stimulating latrophilin-like receptors and signaling cascades that may involve 

NO, protein kinase C and/or calcium. The release of transmitters may also be affected by the 

activation of neuronal SLO-1 K+ channels. It is unlikely that emodepside acts at the 

extracellular surface of the SLO-1 K+ channel because of the slow time course of its action. It 

is very lipophilic and could act in the lipid membrane phase on the SLO-1 K+ channel or 

move into the cytoplasm and act intracellularly. A SLO-1 K+ subunit (B) and channel (C & 

D) is shown composed of 4 subunits along with the ‘RCK’ cytoplasmic regulatory region of 

the channel. 

 

 

A3.3 K-dependent hyperpolarization by releasing inhibitory neuropeptides (PF1/PF2) 

Willson et al. (2003) tested further effects of emodepside on Ascaris suum muscle 

contraction and electrophysiology. They observed that 10 µM emodepside had a slower 

inhibitory action on muscle contraction than GABA and produced a slow hyperpolarization 

without a detectable change in conductance. The inhibitory neuropeptides, PF1 & PF2, also 

produce a slow inhibition of contraction of A. suum muscle, similar to emodepside (Fellowes 

et al., 2000; Willson et al., 2003). PF1 causes a slow, non-reversible, concentration-

dependent membrane hyperpolarization that is significantly blocked by 4-aminopyridine 

(Franks et al., 1994; Verma et al., 2009). When Willson et al. (2003) found that the K 

channel blocker 4-aminopyridine inhibited the effect of emodepside on membrane potential 

they reasoned that emodepside may mimic effects of PF1 & PF2 by stimulating the release of 
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inhibitory neuropeptides like PF1 or PF2 which then produce a K-dependent 

hyperpolarization. Although there is a similarity between effects of PF1 and emodepside 

effects on the membrane potential their effects are not identical. PF1 and emodepside both 

increase calciumdependent voltage-activated K+ currents in A. suum, but the effects on 

calcium currents are different: PF1 inhibits voltage-activated Ca2+ currents (Verma et al., 

2009); but emodepside has no effect on voltage-activated Ca2+ currents (Buxton et al., 2011). 

The effects of emodepside are also slower in onset: emodepside inhibits ryanodine-induced 

spiking more slowly than PF1, probably because of the lack of emodepside effect on the 

voltage-activated Ca2+ currents (Buxton et al., 2011). Thus although there may be some 

similarities in the effects of emodepside and the inhibitory neuropeptides, the evidence 

suggests that emodepside does not act by releasing PF1-like neuropeptides. 

 

A3.4 Latrophilin receptors 

Immunoscreening with an antibody to PF1022A of an Haemonchus contortus cDNA library 

revealed a G protein receptor that is latrophilin-like, now designated HC110R, and which has 

been expressed in HEK293 cells where it lead to PF1022A-dependent gating of calcium 

(Saeger et al., 2001). The homology of HC110R to mammalian latrophilin receptors which 

trigger neurotransmitter release, raises the hypothesis that emodepside may act (in part) by 

stimulating neurotransmitter release producing inhibition of muscle activity. Muhlfeld et al. 

(2009) used surface plasmon resonance to show that the neuropeptides AF1, AF10 and PF2 

bind, with low affinities, to HC110-R, implying that these neuropeptides may be putative 

natural ligands of the latrophilin-like receptor. They did not observe any high affinity binding 
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characteristics with PF1. Caenorhabditis elegans is sensitive to effects of emodepside (Bull 

et al., 2007). The effects are: inhibition of movement, inhibition of pharyngeal pumping and 

inhibition of egg-laying. In 2004, Willson et al. described effects of emodepside (100 nM) on 

the C. elegans pharynx with the effects of emodepside stimulating exocytosis and eliciting 

pharyngeal paralysis. The paralysis of the pharynx produced by emodepside depended on the 

presence of the latrophilin (LAT-1) receptor with emodepside resistance appearing in lat-1 

null mutants. Two genes were recognized that encode latrophilin receptors in C. elegans, lat-

1 and lat-2. The role of LAT-1 and LAT-2 in mediating effects of emodepside on feeding 

and locomotion were investigated with RNAi and null-mutants (Willson et al., 2004; Bull et 

al., 2007; Guest et al., 2007). The pharyngeal system of lat-1 null-mutants had reduced 

emodepside sensitivity, but the sensitivity of locomotion to emodepside was unchanged 

(Guest et al., 2007), suggesting that emodepside has both LAT-1 dependent effects on the 

pharynx and LAT-independent effects on locomotion. 

 

A3.5 SLO-1 as a target for emodepside in C. elegans 

Guest et al. (2007) used a mutagenesis screen of C. elegans and found mutant alleles of slo-1 

that encode a Ca2+-dependent K channel in C. elegans that were resistant to the effects of 

emodepside on locomotion. They observed that slo-1 but not slo-2 null-mutants were more 

resistant to the inhibitory effects of emodepside than lat-1 and lat-2 (latrophilin receptor) 

double mutants. Guest et al. (2007) proposed that emodepside either directly or indirectly 

activates SLO-1 that is present in body wall muscle and motor neurons to produce its 

inhibitory effects in nematodes. Initial slo-1 pharyngeal expression experiments in slo-1 null-



www.manaraa.com

 161 

mutants did not detect effects of emodepside on the frequency of pharyngeal pumping. 

However, Crisford et al. (2011) subsequently described how ectopic over-expression of 

SLO-1a in C. elegans pharyngeal muscle did, in fact, give rise to sensitivity of the 

pharyngeal muscle to emodepside. Crisford et al. (2011) also described transgenic 

experiments in which the C. elegans SLO-1a channel was swapped for KCNMA1, the human 

orthologue. Interestingly, the sensitivity to emodepside in the rescues depended upon origin 

of the SLO-1 channel: the human KCNMA1 channel was 10–100 times less sensitive to 

emodepside than the rescues expressing C. elegans SLO-1α channel. In addition to the 

heterologous expression of the human KCNMA1 BK channel, expression of the SLO-1 K 

channels of the nematode parasites, Ancylostomum caninum and Cooperia oncophora in the 

C. elegans slo-1 loss of function mutant, NM1968, found that expression restored 

emodepside sensitivity (Welz et al., 2011). Restoration of the full emodepside sensitivity was 

also found to depend on the nature of the promoter used: the parasite slo-1 promoter 

produced only partial recovery of sensitivity compared to full recovery produced by the C. 

elegans slo-1 promoter. One explanation for this effect of the promoters on emodepside 

sensitivity suggests that the parasite promoter is less efficient in C. elegans; another 

explanation is that the parasite promoters used for slo-1 expression might be truncated, thus 

driving only partial expression activity. A proposed model for the mode of action of 

emodepside in C. elegans (Welz et al., 2011) is that: emodepside acts directly or indirectly to 

activate the SLO-1 K channel; the effect on pharyngeal pumping involves latrophilin 

receptors and SLO-1 on pharyngeal neurons; and the effect on body wall muscle involves 

SLO-1 in the muscle but not latrophilin receptors. 

 



www.manaraa.com

 162 

A4.0 Properties of SLO-1 K channels 

Two similar, SLO-1 and SLO-2 types of K channel (Lim et al., 1999; Wang et al., 2001; 

Jospin et al., 2002) have been identified in C. elegans. Although the proteins of these 

channels have some similar motif sequences, the channels are very different in their 

regulation by intracellular ions. SLO-2 is regulated by intracellular Na+ as well as Cl- ; SLO-

1 is regulated primarily by intracellular Ca2+ (Jospin et al., 2002). We focus here more on the 

SLO-1 ion channels, as it is the putative site of action of emodepside. The SLO-1 K channels 

have large (200 pS) conductances and are sometimes called ‘big’ potassium (Dworetzky et 

al., 1996) channels, maxi-K channels or SLO family channels. The SLO-1 K channel of 

vertebrates is composed of 4 α-subunits; homologous subunits of C. elegans and A. suum are 

found and like vertebrate SLO-1 α-subunits have seven (S0–S6) transmembrane regions, a P-

loop between S5 and S6, a large intracellular domain (S7–S10) and a well conserved 

‘calcium bowl’ between domains S9 and S10 (see Fig. 5.0B–D and 5.1). In addition, the 

regulator of the K channel conductance domains (S7, S8) contains high and low affinity 

calcium binding sites.  

The SLO-1 α-subunits show alternative splicing, producing channels with different calcium 

sensitivities; in C. elegans there are at least 3 splice variants (SLO-1a, SLO-1b and SLO-1c; 

(Wang et al., 2001)). Each α-subunit of the channel has at least two high affinity calcium 

binding sites and one low calcium/magnesium binding sites. The channel also combines with 

secondary, regulatory β-subunits (Knaus et al., 1994c) in vertebrates but these subunits have 

not yet been identified in C. elegans. However, BKIP-1 has been identified in 

Caenorhabditis elegans as a Slo-1 channel auxiliary subunit of physiological importance 

(Chen et al., 2010). The suggested function of the SLO-1 K channels is that they adjust the 
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resting membrane potential of electrically excitable cells and adjust the level of excitability, 

up or down, and so affect the response to other inputs. In addition to opening of the channel 

being regulated (Fig. 5.0 C and D) by membrane potential and calcium, magnesium, NO, 

CO, arachidonic acid, prostaglandins and phosphorylation by cAMP-dependent protein 

kinase A, diacylgycerol/ Ca2+-dependent protein kinase C, and cyclic GMP-dependent 

protein kinase G can affect channel opening (Ghatta et al., 2006; Salkoff et al., 2006). These 

kinases allow SLO-1 to be coupled to multiple and quite diverse signaling cascades 

permitting different ways of adjusting the excitability of the cells. The effect of different 

nematode neuropeptides which can affect cAMP and cGMP levels, (e.g. AF1, AP2, PF1 & 

PF2) could then affect SLO-1 channels (Verma et al., 2007, 2009). 
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Figure 5.1 SLO-1 of A. suum and C. elegans alignments of deduced amino-acid sequences. 

Identical amino-acids between C. elegans and A. suum sequences are shaded in dark blue and 

distinct amino-acids sharing similar physico-chemical properties are shaded in light blue. 

Predicted signal peptide sequences are shaded in grey. The transmembrane domains (TM) are 

noted below the sequences. Comparison of Asu-SLO-1 (Genbank accession no ACC68842.1) 

and Cel-SLO-1 (Genbank accession no NP_001024259.1) showing the 7 TM domains (S0-
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S6), P-loop, S7-S10 intracellular domains and “Ca2+ bowl”. Domain annotation corresponds 

to A. suum SLO-1. Figure modified from Buxton et al., 2011. 

 

 

 

A4.1 SLO-1 as a target for emodepside in A. suum 

Willson et al. (2003) described the muscle relaxation and inhibitor effect of emodepside on 

A. suum body muscle and that emodepside produced a Ca2+-dependent hyperpolarization. It 

was suggested that emodepside may act at the neuromuscular junction to stimulate release of 

an inhibitory neuropeptide similar in action to PF1 or PF2. Voltage-clamp experiments have 

now allowed the effect of PF1, increasing the opening of Ca2+-dependent voltage-activated K 

channels and decreasing the calcium currents present in A. suum muscle to be observed 

(Verma et al., 2009). Buxton et al. (2011) found Asc-lat-1 and Asu-slo-1, evolutionarily 

conserved homologues of the lat-1 and slo-1 genes, to be expressed in adult A. suum body 

muscle flaps. They showed, using the same voltage-clamp techniques, that emodepside 

activates SLO-1-like K channels like PF1 (Fig. 5.2) but unlike PF1, emodepside does not 

decrease calcium currents. These voltage-activated K channels were Ca2+-dependent and 

inhibited by 5 mM 4-aminopyridine. The membrane hyperpolarization and increase in 

voltage-activated K current produced by emodepside (Fig. 5.2) are very slow in onset and 

increase over a period of more than 10 min (Buxton et al., 2011); the speed of onset is slower 

than the onset of the effect of the inhibitory action of PF1. The slow onset effect of 

emodepside might be due to the very lipophilic nature of emodepside and a membrane 
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partitioning effect. It may also be because the effects of emodepside are indirect and 

produced by activation of a slow signaling cascade. The effect of emodepside is potentiated 

by sodium nitroprusside (a NO donor) and PMA (a protein kinase C activator), antagonized 

by iNOS inhibitors (with NNLA) and antagonized by inhibition of protein kinase C 

(staurosporine, Buxton et al., 2011). Interestingly, these signaling molecules are known 

activators of SLO-1 in other cells (Bolotina et al., 1994; Mistry and Garland, 1998; Wang et 

al., 1999a; Holden-Dye et al., 2007) and therefore encourage the view that emodepside could 

act through either or both of these signaling cascades and the signaling cascades may be in 

series or parallel (Fig. 5.0 C and D). A number of studies on the mammalian orthologues of 

SLO-1 show that they are directly and alternately regulated by complex, multiple signaling 

cascades, involving NO and diacylglyerol or PKC activation (Ghatta et al., 2006; Salkoff et 

al., 2006). Fig. 5.1 shows alignments of C. elegans and A. suum SLO-1 (Genbank accession 

no ACC68842.1). The Asu-SLO-1 sequence encodes a protein of 1117 amino-acids that has 

78% identity and 87% similarity to the Cel-SLO-1 sequence. The SLO-1 sequences have 

seven transmembrane-spanning domains (S0–S6), a P-loop, four hydrophobic intracellular 

segments, (S7–S10) and a ‘‘Ca2+ bowl’’ that typifies a large conductance calcium-sensitive 

potassium channels, (Wallner et al., 1996; Wei et al., 1996; Schreiber and Salkoff, 1997; Lim 

et al., 1999; Ghatta et al., 2006). 
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Figure 5.2 Electrophysiological techniques (two micropipette current-clamp and voltage-

clamps) for recording from Ascaris suum.  

(A) A. suum muscle bag showing the current (I) and voltage (V) micropipettes in the bag, and 

the perfusion needle (P). (Bi) Representative current-clamp traces showing the slow 
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hyperpolarizing membrane potential during and after 10 min application of 1 µM 

emodepside. Note that the trace does not get thinner because the membrane resistance does 

not change detectably. (Bii) Outward current response to 1 µM emodepside at higher time 

resolution. Holding potential -35 mV. Notice that emodepside produces a gradually 

increasing current after a delay of some 30 s. The response does not plateau in the time 

period of this recording. (Biii) Voltage-clamp traces of control K current and the time-

dependent effect of 1 µM emodepside on the K currents, all to a step potential of 0 mV from 

a holding potential of -35 mV. (C) Bar chart (mean ± se) of 1 µM emodepside effect on 

steady state (LK) currents. Comparison was made between the control 0 mV step current at 30 

– 40 ms and the corresponding current increased by emodepside at 10, 20 and 30 min. 

Emodepside increased LK currents at 10 min (p < 0.01, n = 4, paired t-test), 20 min (p < 

0.01, n = 4, paired t-test) and 30 min (p < 0.05, n = 4, paired t-test). Fig modified from 

Buxton et al. (2011). 

 

 

A5.0 Conclusion 

Emodepside is a broad spectrum anthelmintic that has a mode of action different from the 

other classical groups of anthelmintic and is not expected to show cross-resistance with them. 

It has an inhibitory effect on motility, pharyngeal pumping and egg laying of nematodes and 

its mode of action involves increased opening of a SLO-1 K channel. In rescue experiments 

done by Crisford et al. (2011), there is evidence of direct action of emodepside on the SLO-1 

K channel. The very slow time-dependent effect (Buxton et al., 2011) suggests that the site of 
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action is not an extracellular domain of the SLO-1 K channel. The slow time course is 

consistent with a site of action within the membrane or intracellular domain. 
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APPENDIX B Electrophysiological recording from parasitic nematode muscle 

From paper published in Invertebrate Neuroscience (2008) 

Alan P. Robertson2, 3, Sreekanth Puttachary3, Samuel K Buxton3, Richard J Martin3  

 

B1.0 Abstract 

Infection of man and animals with parasitic nematodes is recognized as a significant global 

problem (McLeod, 1994; Hotez et al., 2007). At present control of these infections relies 

primarily on chemotherapy. There are a limited number of classes of anthelmintic 

compounds and the majority of these acts on ion-channels of the parasite (Martin et al., 

1996b). In this report, we describe electrophysiological recording techniques as applied to 

parasitic nematodes. The aim of this report is: (1) to promote the study of ion channels in 

nematodes to help further the understanding of antinematodal drug action; (2) to describe our 

recording equipment and experimental protocols; and (3) provide some examples of the 

information to be gleaned from this approach and how it can increase our understanding of 

these important pathogens. 

1 Reprinted with permission of Invert Neurosci (2011), 8: 167-175 
2 Corresponding author and Assoc. Professor, Dept. Biomedical Sciences, Iowa State 
University 
3 Contributed in writing the manuscript 
 

 

B2.0 Introduction 

Nematode infections are a significant problem in both human (Hotez et al., 2007) and 

veterinary medicine (McLeod, 1994). Chemotherapy is widely used for treating these 
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infections. The range of drugs available for treatment is limited and repeated large scale use 

has led to the development of drug resistance in numerous parasite species (Kaplan, 2004). It 

is anticipated that the problem of drug resistance will get worse particularly since only one 

new class of anthelmintic has come to market recently (emodepside). A Consortium on 

Anthelmintic Resistance SNPS (CARS) has been set up to monitor drug resistance and 

advance molecular methods for detecting resistance (http:// 

consortium.mine.nu/cars/pmwiki.php/Main/HomePage).  

The majority of anthelmintic compounds act on the neuromuscular system of the worm, for 

review see Robertson and Martin (2007). As with any excitable system, ion-channels are 

central to nematode neuromuscular signaling and function. Here we review the methods we 

have used to study ion-channels on nematode muscle that are either potential or actual target 

sites of new and existing compounds. The current anthelmintics that act on nematode ion-

channels include: the avermectins/milbemycins which act on glutamate-gated chloride 

channels and/or GABA channels; the nicotinic anthelmintics (pyrantel, etc.) gate non-

selective cation channels (nicotinic acetylcholine receptors). However, our understanding of 

the receptors activated during the therapeutic response is incomplete. In addition, there are 

many other ion-channels (peptide-gated, potassium and calcium selective channels) that may 

have critical roles for neuromuscular function in the nematode. Here we describe the 

electrophysiological methods we have used to examine nematode ion channels. These 

techniques are widely used by biologists to study channels in almost every living system and 

are not specific to our approach. We give details of methods of how we use them to study 

parasitic nematode ion channels. Our aim is to encourage others to study this important but 

overlooked field. This report is not intended as an introduction to electrophysiology. It is 
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intended to highlight the small alterations in methodology required to adapt these classical 

electrophysiological techniques to study currents and channels in parasitic nematodes. 

 

B3.0 Methods 

B3.1 Nematode tissue 

Successful electrophysiological studies require a regular supply of live, viable parasite tissue 

(Fig. 1). This, in itself, is a common limiting experimental step: many parasitic species 

cannot easily be maintained for long periods in vitro. We have found Ascaris suum can be 

obtained from the local abattoir, although the ease of collection (related to the incidence of 

infection in the local swine population) appears to be somewhat seasonal. Adult worms 

remain viable for 4–7 days when kept at 30–35_C in Locke’s solution (mM): NaCl 155; KCl 

5; CaCl2 2; NaHCO3 1.5; D-glucose 5. It is possible, though significantly more labor and 

cost intensive, to maintain experimental infections of different parasite species; the 

Oesophagostomum dentatum life-cycle can be successfully maintained by passage through 

pigs (the native host) and will also yield useful adult worms on euthanasia of the hog. An 

additional benefit of using laboratory infections is the possibility of maintaining specific 

isolates, e.g. drug resistant isolates that have less genetic diversity than sampling the wild 

population. Obtaining viable material from other parasite species (e.g. human pathogens) can 

be more problematic and may necessitate the studies to be carried out on non-adult life cycle 

stages or even expression of the ion channel of interest in a heterologous system, e.g. 

Xenopus laevis oocytes. 
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B3.2 Dissection 

Ascaris are large worms and the dissection needed to expose the muscle cells for recording is 

simple. A ~1 cm section of the worm is cut from the anterior region of the parasite. The 

resulting tube is then cut along one of the lateral lines and pinned onto a sylgard lined 

recording chamber cuticle side down. The gut is easily removed using fine forceps to expose 

muscle bags. With smaller nematodes the same approach can be applied but this time using 

the whole length of the worm. For adult O. dentatum, the entire worm (~1 cm) is pinned into 

the chamber (head and tail only) and then cut along a lateral line using a scalpel. The gut and 

reproductive tissue can then be removed and the preparation pinned out further to reveal the 

somatic muscle cells. A similar approach has been developed for electrophysiological 

recording from the muscle cells in Caenorhabditis elegans (Richmond and Jorgensen, 1999). 

For C. elegans, the small size of the worms means that the pins have been replaced by 

cyanoacrylate glue, but the principles of sticking the worm down, cutting it open, removing 

the gut and reproductive tissue and producing a ‘‘flap’’ or ‘‘filleted worm’’ remain the same. 

Thus, electrophysiological techniques have been applied to worms from ~30 cm to less than 

1 mm in size. It should be noted, however, that as the worm size decreases the technical 

difficulty of the dissection increases substantially. 
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Figure 6.0 Ascaris suum used for the electrophysiology recordings. 

(A) Photograph of adult Ascaris suum; (B) photograph of muscle flap preparation showing 

muscle cell bags (~200 µlm diameter) suitable for two-electrode recording techniques.  

The faint horizontal line is the ventral nerve cord in this preparation. 

 

B3.3 Two electrode current-clamp 

The large size of many nematode cells makes them amenable for study using classical two-

electrode recording techniques. The electrophysiology ‘‘rig’’ used for both current-clamp 

and voltage-clamp experiments is essentially identical (Fig. 6.1). The electronic components 

are: a current/voltage amplifier (Axoclamp 2A or 2B); a digitizer to convert the amplified 

signals from analog to digital format (digidata 1320A/1322A) and a computer for running the 

data acquisition software. The computer software (Clampex v8 or v9, Axon Instruments) not 

only acquires the data but can be used to control the perfusion system and command the 
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amplifier to inject current or voltage through either electrode. The tissue is perfused by a 

system controlled by six valves, a computer and a Warner VC-6 valve controller. The 

incoming perfusate is warmed to the desired temperature by a Warner SH-27B inline heater 

controlled by a Warner TC-324B heater controller. The preparation is viewed using a Stereo 

zoom dissecting microscope (Bausch & Lomb) and a fiber optic light source. The tissue is 

mounted in a sylgard lined Perspex chamber (custom made) surrounded by a water jacket to 

maintain temperature. The water jacket is perfused with warm water using a heated water 

pump (Isotemp 301b, Fisher Scientific). Microelectrodes are mounted on the amplifier 

headstages and maneuvered into position using a Leica micromanipulator. 

For current-clamp experiments we pull microelectrodes using standard walled borosilicate 

glass with filament, o.d. 1.5 mm, i.d. 0.86 mm (G150F-6, Warner Instruments). 

Microelectrodes are fabricated using a Flaming/Brown horizontal electrode puller (Model P-

97, Sutter Instruments) and are typically pulled to a resistance of 20–30 MΩ. The filament 

allows easy backfilling of the electrodes with the relevant solution, typically for current-

clamp this is 3 M potassium acetate. The recording chamber is mounted on a nitrogen 

supported anti-vibration table (TMC Corp.) to minimize mechanical noise. A Faraday cage 

(TMC Corp.) surrounds the recording chamber to reduce electrical noise. Microelectrodes are 

positioned directly over the cell to be recorded from. The muscle cell is carefully impaled 

with both electrodes. Typically resting membrane potentials are in the range -25 to -40 mV 

for somatic muscle cells in Ascaris. The current injecting protocol is then applied through 

one microelectrode (Im, Fig. 6.1D); our standard protocol is 0.5 s pulses of -40 nA current at 

a frequency of 0.25 Hz. Another microelectrode (Vm, Fig. 6.1D) can then be used to monitor 

the membrane potential and also the input conductance of the cell (typically 1–3 µS). The 
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signal is filtered at 0.3 kHz, digitized and stored on the computer hard drive for later analysis. 

The effect of perfused drugs can then be monitored. It is possible to record for ~1 h from a 

single cell in a healthy preparation. Our basic recording solution, Ascaris Perienteric Fluid 

(APF) consists of NaCl (23 mM), Na-acetate (110 mM), KCl (24 mM), CaCl2 (6 mM), 

MgCl2 (5 mM), glucose (11 mM), HEPES (5 mM), pH 7.6, adjusted with NaOH, and can be 

modified when necessary to determine the ionic basis of drug effects. 
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Figure 6.1 Current-clamp electrophysiology set-ups. 

(A) Photograph; (B) diagram of two electrode current-clamp ‘‘rig’’; (C) photograph and (D) 

diagram of the recording chamber for current-clamp experiments. The muscle flap is clearly 

seen with both microelectrodes visible. The perfusate is applied via a 20-gauge needle (gray 

arrow in diagram) and excess removed by gravity through the outflow on the bottom right of 

the photograph and diagram (gray circle) 
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B3.4 Two electrode voltage-clamp 

The electrophysiology ‘‘rig’’ for two-electrode voltage clamp is identical to that used for 

current-clamp experiments. However, there are some small but significant changes required 

to perform successful voltage-clamp experiments. Firstly, in electrode manufacture, the large 

size of the Ascaris muscle cell means that space clamp is quite poor. The injection of the 

large currents required to effect the desired voltage change requires a lower resistance current 

injecting electrode. Typically for voltage-clamp experiments we use a current injecting 

electrode (Im) with a resistance of 2–5 MX. This is easily achieved by carefully breaking the 

tip of a standard current-clamp electrode using a piece of tissue paper. The voltage sensing 

electrode (Vm) is a standard current-clamp electrode. 

Secondly, in voltage-clamp experiments, it is desirable to investigate the current flow 

through specific ion channel types or currents carried by individual ion species, e.g. outward 

K currents or inward Ca currents. To this end it is desirable to eliminate, as much as possible, 

currents carried by other ions and channels. Traditionally, this is achieved by either 

elimination/substitution of ions (other than the ion of interest) from recording solutions or by 

pharmacological block of other channel types present. For example, to record voltage 

activated inward calcium currents we have added cesium to the pipette filling solution 

(intracellular Cs blocks potassium currents, electrode fill solution is 1.5 M Cesium acetate + 

1.5 M potassium acetate) and 4-amino pyridine (4-AP) to the bathing solution (4-AP is a 

selective blocker of K channels). Conversely, we have found that voltage-activated outward 

potassium currents are more easily studied when calcium is substituted for magnesium in the 

bathing medium, thus eliminating voltage activated inward calcium currents. It is also 

possible to isolate a current of interest by varying the voltage changes applied to the cell. 
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Isolating and optimizing the current to be studied is often the most demanding and time 

consuming aspect of these experiments. Unfortunately, parasitic nematodes are not the most 

widely studied group of organisms and drugs that affect ion channels in other preparations 

have been found to be inactive or significantly less active on Ascaris muscle cells. For 

example, the calcium channel blocker verapamil is frequently used to eliminate certain types 

of calcium current in vertebrate preparations, thus facilitating the study of other current 

types. Unfortunately, in Ascaris verapamil has no significant effect on voltage gated inward 

currents. 

 

B3.5 Single-channel patch-clamp 

The majority of parasitic nematode cell types we have worked with are too large to render 

whole cell patch-clamp recording a viable option; so we use two-electrode techniques. Whole 

cell patch recording has been successfully developed for investigating the muscle cells of C. 

elegans (Richmond and Jorgensen 1999) and is not described further here. It should be noted, 

however, that this approach may be suitable for the study of smaller nematode cells where 

impalement with two sharp electrodes is not possible. It is possible to use the patch-clamp 

technique to measure the properties of individual ion channel molecules. This ‘‘single-

channel’’ patch recording technique is relatively straightforward using parasitic nematode 

muscle cells.  The principle of this technique is the electrical isolation of a small ‘‘patch’’ of 

membrane containing one (or very few) ion channel molecules. Then conventional voltage 

protocols are applied to the membrane patch and the opening and closing of the single 

channel molecule can be measured. 
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The principles behind this technique are straightforward but in practice this is probably the 

most technically demanding compared to the other approaches outlined in this review. For 

single-channel recording from nematode muscle we use an anti-vibration table and Faraday 

cage (TMC Corp.) as in the current-clamp ‘‘rigs’’. The amplifier is an Axopatch 200B (Axon 

Instruments) connected to a PC (Lansdell et al.) via a digitizer (Digidata 1320A/1322A) and 

controlled by Clampex (v8 or v9) data acquisition software (Axon Instruments). Nematode 

muscle cells or muscle cell derived vesicles are held in a recording chamber (Warner 

Instruments) and viewed through a Nikon TE2000 inverted light microscope at 9400 

magnification. Vesicles are easily viewed under normal light but small C. elegans muscle 

cells are best viewed using DIC optics. The amplifier headstage and microelectrode are 

positioned using a Narishige (MHW-3, Narishige Inc.) hydraulic micromanipulator. 

Microelectrodes for patch clamp studies are pulled from thin walled glass capillaries, o.d. 1.5 

mm, i.d. 1.16 mm with no filament (G85150T-3, Warner Instruments) using a two stage 

vertical electrode puller (models PP-830 or PC-10, Narishige Inc.). Electrodes are coated 

close to the tip with Sylgard to improve frequency responses and fire polished (MF-900 

micro-forge, Narashige Instruments) to the desired resistance, typically 2–5 MX. 

A major requirement for successful patch-clamp experiments is the formation of a high 

resistance seal (>1 GΩ, a giga seal) between the glass microelectrode and the cell membrane. 

Giga seal formation requires clean debris free membranes, which are reasonably common in 

cells in tissue culture but less so in intact tissue. Ascaris and other nematodes have a large 

amount of collagen overlying the muscle cell preventing giga seal formation. This must be 

removed by enzyme treatment using collagenase (type 1A, Sigma). Collagenase treatment 

removes the collagen matrix and allows access of the patch pipette to clean muscle cell 
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membranes. One result of collagenase treatment is the ‘‘budding’’ off of clean membrane 

vesicles from the bag region of the muscle cells. By applying the patch clamp technique 

Martin et al. (1990) discovered that these membrane vesicles contain functional ion-

channels. We have successfully applied this method to record ion channels from vesicles 

originating from O. dentatum muscle cells (Robertson et al., 1999). Details of vesicle 

preparation and recording protocols are given below. 

Ascaris were dissected and a muscle flap was prepared and pinned cuticle side down onto a 

plastic dish lined with Sylgard. The muscle flap preparation was washed with maintenance 

solution to remove fragments of the gut. Maintenance solution is (in mM): 35 NaCl, 105 

sodium acetate, 2.0 KCl, 2.0 MgCl2, 10 HEPES, 3.0 D-glucose, 2.0 ascorbic acid, 1.0 EGTA, 

pH 7.2 with NaOH. The maintenance solution was then replaced with collagenase solution. 

Collagenase solution is maintenance solution without EGTA and with 1 mg/ml collagenase 

Type 1A added (Sigma). After collagenase treatment for 4–8 min at 37oC, the muscle 

preparation was washed (5–10 times) and incubated in maintenance solution at 37oC for 20–

40 min. Small membranous vesicles, 10–50 lm in diameter, grew out from the membrane of 

the muscle cells. These membranous vesicles are transferred to a recording chamber using a 

glass Pasteur pipette. For O. dentatum the vesicle preparation protocol is unchanged, 

however, the yield of vesicles is significantly less due to the smaller size of the parasite. We 

have found that vesicle yield and quality can vary significantly between batches of worms 

and worms of different size. As a guide, smaller worms require less collagenase treatment 

than larger ones. Prolonged collagenase treatment yields an abundance of vesicles but they 

are more fragile and rapidly become unusable. Shorter collagenase treatment yields fewer 

vesicles but they are generally more robust. For worms as small as C. elegans the collagen 
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matrix is significantly less of a problem and collagenase treatments of 0.5 mg/ml for 5–10 s 

are adequate to clean the muscle cell membrane and allow seal formation directly from the 

body wall muscle cells. Finally, we have found that collagenase from different suppliers or 

even different batches from the same supplier can affect the quality of vesicles produced. 

Vesicles are placed in the recording chamber and patch experiments are carried out in the 

isolated inside out patch configuration. Achieving the outside-out patch configuration is 

considerably more difficult when using membrane vesicles as they tend to implode when 

rupturing the patch membrane. The recording conditions for studying nAChR channels are 

given below. Voltage protocols and solution recipes can be altered depending on the ion-

channel to be studied. 

The pipette was filled with pipette solution containing (mM): CsCl, 140; MgCl2, 2; HEPES, 

10; EGTA, 1; pH 7.2 with CsOH. The pipette solution also contained the agonist (levamisole, 

acetylcholine, etc.) at the desired concentration. The bathing solution was (mM): CsCl, 35; 

Cs acetate, 105; MgCl2, 2; HEPES, 10; EGTA, 1; pH 7.2 with CsOH. As in other voltage 

clamp experiments, it is desirable to isolate the specific ion-channel of interest. To this end 

the bathing solutions contained symmetrical Cs as it permeates the nAChR but blocks 

potassium channels. The chloride concentration was asymmetrical to identify contaminating 

chloride channels by their non-zero reversal potentials on later analysis. Calcium is absent 

from the solutions to prevent contamination of the recordings with Ca-dependent chloride 

channel openings. Typically for ligand-gated ion channels we record for approximately 1 min 

at several different holding potentials between -100 and +100 mV (normally, -100, -75, -50, 

+50, +75 and +100 mV). Membrane breakdown is common at both -100 and +100 mV. In 

some preparations, we have found that addition of 0.5 mM dithiothreitol helps to stabilize the 



www.manaraa.com

 183 

membrane at more extreme potentials (Robertson et al. 1999). Recordings are viewed in real 

time by filtering at 2.5 kHz (8-pole Besel filter, custom made) and viewing on a digital 

storage oscilloscope (Hitachi VC-6025). The recordings are also filtered by the amplifier (5 

KHz, Besel filter) digitized and stored on the PC for later analysis. 

As with all recordings made using the above methods the data generated is suitable for 

analysis using standard methods. In the case of nAChR single-channel currents we normally 

calculate the single-channel conductance, mean open-time, mean closed-times and the 

probability of the channel being in the open state (Popen). Other more complex single-channel 

analysis is possible but beyond the scope of this manuscript. 

 

B4.0 Results 

Examples of the type of data available from each of our experimental approaches are given 

below. The data in this section was obtained from Ascaris somatic muscle. 

 

B4.1 Illustrative results using two electrode current-clamp 

Figure 6.2 is a current-clamp recording from Ascaris somatic muscle. Figure 6.2A is a low 

time resolution display covering approximately 30 min. The blue arrow (dark gray) indicates 

the resting membrane potential of the cell (-37 mV in this experiment). The red arrow (light 

gray) shows the voltage response to the -40 nA injected current pulses. The size of the 

voltage response is inversely related to the input conductance of the cell. The size of the 

response increases as the conductance decreases (when ion channels close) and vice versa. 

Figure 6.2A clearly demonstrates that levamisole application induces a rapid depolarization. 
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When the trace is examined in more detail (Fig. 6.2B, C) the effect on the cell’s conductance 

also becomes apparent. In Fig. 6.2B, C, the red arrow (light gray) again represents the 

response to injected current and the blue arrow (dark gray) this time represents the 

depolarization induced by levamisole. In Fig. 6.2B the depolarization induced by levamisole 

(blue arrow, dark gray) is clearly seen. Levamisole is an agonist of the nicotinic acetylcholine 

receptor (nAChR) ion channel; application of the drug causes these channels to open and 

cations to enter the cell thus causing the depolarization. The opening of the ion channels 

causes an increase in input conductance during the depolarization. The red arrow highlights 

the voltage response to injected current and at the peak of the depolarization this response is 

reduced, reflecting the conductance increase due to nAChR opening. Figure 6.2B is the 

levamisole response after a 2 min application of the neuropeptide AF2 (1 µM). It is apparent 

that both the levamisole induced depolarization (blue arrow) and conductance change are 

substantially increased by treatment with this peptide. Figure 6.2A also demonstrates that 

AF2 treatment prolongs the recovery time after levamisole treatment. 
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Figure 6.2 Representative current-clamp results. 

(A) Low time resolution current-clamp trace illustrating the effects of 20 s applications 

(asterisk) of 1 µM levamisole (4 ml/min flow rate) before and after treatment of the muscle 

flap with 1 µM AF2 (a nematode FMRF-related neuropeptide). Blue arrow illustrates the 

resting membrane potential while the red arrow illustrates the size of the voltage response to 

-40 nA injected current. Levamisole induces an obvious depolarization of the cell; B, C 

higher time resolution view of sections of the recording in (A). Red arrow (light gray) 

illustrates the voltage response to injected current and blue arrow (dark gray) illustrates the 

amplitude of levamisole induced depolarization. It can be clearly seen that both the 

depolarization and conductance change in response to levamisole are larger after AF2 

treatment (C) than before (B). 



www.manaraa.com

 186 

 

B4.2 Illustrative results using two electrode voltage-clamp 

A sample experiment using two electrode voltage-clamp recording on Ascaris muscle is 

shown in Fig. 6.3. In this experiment, we have isolated the voltage gated potassium currents 

and examined the effects of the potassium channel blocker 4-amino pyridine (4-AP). To 

study the potassium currents in isolation we have replaced calcium (a permeant ion) in our 

recording solutions with the same concentration of magnesium (an impermeant ion) to 

remove the voltage activated inward currents carried by calcium. Figure 6.3A are the 

outward currents carried by potassium in response to 40 ms step voltage changes in the 

holding potential of the cell. In this instance, the cell was held at -35 mV and stepped to -25, 

-20, -15, -10, -5, 0, 5, 10, 15, and 20 mV. The same voltage step protocol was applied in the 

presence of 5 mM 4-AP (Fig. 6.3B) which substantially reduced the amplitude of the outward 

potassium currents. 

After a 30-min wash period the currents had partially recovered (Fig. 6.3C). The maximum 

current at each voltage step was plotted (Fig. 6.3D) and clearly shows the inhibitory effect of 

4-AP and this effect was partially reversible. 
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Figure 6.3 Illustrative results obtained with voltage-clamp technique. 

Voltage activated potassium currents from Ascaris muscle bags recorded under two electrode 

voltage-clamp; (A) under control conditions (Ca free APF solution); (B) during application 

of 5 mM 4-amino pyridine (4-AP); and (C) after 30 min wash in calcium free APF solution; 

(D) current–voltage relationship for the recordings in A–C clearly showing the inhibitory 

effect of 4-AP and that it is partially reversed on washing.  
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B4.3 Illustrative results using single-channel patch-clamp 

A sample of a recording from an Ascaris muscle derived vesicle is shown in Fig. 6.4A. The 

isolated inside-out patch was held at +75 mV and the patch pipette contained 30 µM 

levamisole. Rectangular channel openings are clearly visible ranging from ~2 to 4 pA in size 

and ~0.3 to 10 ms in duration. In this experiment, there are openings to more than one level 

indicating the presence of multiple subtypes of nAChR present in this isolated patch of 

membrane. In Fig. 6.4B, we plotted an amplitude histogram of all openings in the recording 

and fitted with Gaussian distributions to calculate the mean amplitude for each of the three 

peaks. By using multiple agonists, concentrations and antagonists we have been able to 

characterize three subtypes of nAChR on Ascaris muscle cells that have different single-

channel and pharmacological properties. Figure 6.5 is a summary diagram of these findings 

where N-type refers to nicotine preferring subtype of nAChR, L-type refers to a levamisole 

preferring subtype of nAChR and B-type refers to a bephenium preferring subtype of 

nAChR. 
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Figure 6.4 Illustrative single-channel recordings from A. suum muscle vesicle. 

(A) Sample of a single-channel recording from a membrane patch of Ascaris muscle vesicle 

held at +75 mV. Discrete single-channel openings are visible as rectangular current pulses of 

~2 – 4 pA. Blue asterisk highlight the presence of three separable open levels and therefore 

three different ion channel molecules in this membrane patch; (B) histogram of all channel 

openings from the recording illustrated in (A). Three separable peaks are obvious and have 
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been fitted using Gaussian distributions to determine the amplitude of channel opening at 

+75 mV for each channel type. 

 

 
Figure 6.5 Summary diagram representing a membrane patch containing the three nAChR 

subtypes present on Ascaris muscle with some of their single-channel and pharmacological 

properties illustrated. 
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B5.0 Discussion 

The development of electrophysiological methods has taken ~50 years to mature. Early 

studies concentrated on large easily observable cells that were easy to impale, e.g. the squid 

giant axon. Interestingly, Ascaris suum muscle cells were investigated as early as the 1950s 

(Jarman, 1959). As the techniques were refined the need for large cells decreased. 

Additionally, Brading and Caldwell (1971) found that Ascaris had different properties to 

other more typical cell types. These developments possibly led to the conclusion that Ascaris 

was not necessarily a good model for general electrophysiology studies of cells and have thus 

restricted the amount of research carried out on this and other parasitic nematodes using 

electrophysiological techniques. 

We have described some of the electrophysiological methods that can be used to study ion-

channels in Ascaris and other nematodes. Included in the methods section are additional 

details that we have found important for successful studies, details that are seldom discussed 

at length in other publications due to space constraints. The aim of this report is to provide 

detailed information to facilitate the study of ion channels in parasitic nematodes by any 

interested researchers. 

The importance of studying these parasite ion-channels is readily apparent. There are a 

number of groups of anthelmintic compound that act on channels in parasites. These include: 

the cholinomimetics (pyrantel, etc.) that act as agonists of nAChRs on muscle (Harrow and 

Gration, 1985); the avermectins are allosteric activators of glutamate-gated chloride channels 

in the pharynx (Wolstenholme and Rogers, 2005) and/or GABA-gated chloride channels on 

muscle; piperazine an agonist of GABA-gated chloride channels on muscle (Martin, 1982); 

emodepside is proposed to have an effect on potassium currents (Guest et al., 2007); and 
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recently the amino acetonitrile derivatives (AADs) are proposed to be nAChR antagonists 

(Kaminsky et al., 2008). 

We have detailed our approaches on nematode muscle. Several other groups have 

successfully used electrophysiological techniques in a variety of preparations including the 

musculature (Holden-Dye and Walker, 1990) to examine ion-channel properties, drug action 

and more basic biological questions. The pharynx of Ascaris has been investigated using 

whole cell current-clamp (Martin, 1996) and voltage-clamp (Byerly and Masuda, 1979), 

while Adelsberger et al. (1997) successfully developed vesicle production from the pharynx 

to make patch recordings of glutamate-gated chloride channels. The electrophysiological 

properties of parasite nerve cells have also been investigated in detail (Davis and Stretton, 

1996). While more recent work on C. elegans has developed techniques for recording whole 

cell currents from body wall muscle (Richmond and Jorgensen, 1999), single-channel 

recording of nAChRs from body wall muscle (Qian et al., 2008) and even electrical 

recording of pharyngeal activity (Cook et al., 2006). 
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APPENDIX C   Levamisole receptors: a second awakening 

From a review paper published in Trends in Parasitology, 2012 

Richard J Martin1, 2, Alan P. Robertson3, Samuel K Buxton3, Robin N Beech3, Claude L 
Charvet3, Cedric Neveu3 

 

C1.0 Abstract  

Levamisole and pyrantel are old (1965) but useful anthelmintics that selectively activate 

nematode acetylcholine ion channel receptors; they are used to treat roundworm infections in 

humans and animals. Interest in their actions has surged, giving rise to new knowledge and 

technical advances, including an ability to reconstitute receptors that reveal more details of 

modes of action/resistance. We now know that the receptors are plastic and may form diverse 

species-dependent subtypes of receptor with different sensitivities to individual cholinergic 

anthelmintics. Understanding the biology of the levamisole receptors is expected to inform 

other studies on anthelmintics (ivermectin and emodepside) that act on ion channels. 

 
1 Reprinted with permission of Invert Neurosci (2011), 8: 167-175 

2 Corresponding author and Professor, Dept. Biomedical Sciences, Iowa State University 

3 Contributed in writing the manuscript 

 

C2.0 Levamisole and pyrantel: interest and new knowledge 

One-third of the human population of the world is at risk of helminth infection, and infection 

is also very common in animals. Regrettably, there are still no effective vaccines for 

controlling these infections, so that both treatment and prophylaxis rely on anthelmintic 

drugs. The continued use of these drugs has given rise to concerns over levels of resistance 
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and promoted the search for new knowledge and understanding that might slow its progress. 

The cholinergic anthelmintics (see Glossary), which include levamisole and pyrantel, are an 

important group of anthelmintics that target parasite ion-channels, a property they share with 

other major anthelmintics such as ivermectin and emodepside. Levamisole selectively opens 

a restricted subgroup of nematode acetylcholine receptor (AChR) ion channels in nematode 

nerve and muscle. Opening of AChR channels produces depolarization (Puttachary et al., 

2010), entry of calcium through the opened channels, and an increase in sarcoplasmic 

calcium, producing spastic muscle contraction (Robertson et al., 2010); the parasite is then 

unable to maintain its location (often in the intestine) and is then swept away, effecting the 

cure. Interest in this class of anthelmintic has increased recently because application of new 

methods has demonstrated the presence of diverse receptor subtypes and different cholinergic 

anthelmintic subtype selectivities. It has also allowed better mechanistic explanations of 

resistance and the development of exciting novel compounds such as monepantel and 

derquantel. This review describes new knowledge and insights that have increased our 

understanding of the biology of these receptors. 
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C3.0 Levamisole-sensitive AChRs show pharmacological- and species-dependent diversity 

The very small currents (1 pA = 1 x 10-12 A) that flow through single receptor channels 

activated by levamisole or pyrantel have been recorded from muscle of the parasitic 

nematodes Ascaris suum (Robertson and Martin, 1993), Oesophagostomum dentatum 

(Robertson et al., 1999) and Brugia malayi (Robertson et al., 2011) using the patch clamp 

technique (Figure 7.0). In A. suum there is the L-type (G35 pS) that is preferentially activated 

by levamisole, the N-type (G25 pS) that is preferentially activated by nicotine and the B-type 

(G45 pS) that is preferentially activated by bephenium (Qian et al., 2006). 

At the single channel level, high concentrations of levamisole activated all three AChR 

subtypes (Box 1). In the strongyle species, O. dentatum, that belongs to the same 

phylogenetic clade as Haemonchus contortus and Caenorhabditis elegans, a fourth 

levamisole-activated AChR subtype with a conductance of 40 pS has also been observed 

(Figure 7.0d) (Robertson et al., 1999). We point out that in the free-living nematode, C. 

elegans, that levamisole activates only one conductance subtype of 30 pS, which is not 

activated by nicotine and is pharmacologically different from some of the parasite levamisole 

receptors that can be activated by nicotine (Qian et al., 2008). Together, these observations 

show that levamisole activates a diverse range of receptor subtypes which are separated by 

their detailed pharmacology, channel conductances and species. This diversity emphasizes a 

need for molecular and functional characterization of these receptors in different parasitic 

nematode species as well as in C. elegans. 
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C4.0 The C. elegans model of the levamisole receptor 

Although levamisole was developed for treatment of parasitic nematodes, the intensive study 

of the effects of levamisole in the C. elegans model nematode has given us tremendous 

insight into what may be happening in parasitic nematodes. Starting from the early days of 

Sydney Brenner (Brenner, 1974), levamisole (tetramisole) has been used in genetic studies of 

C. elegans, so that we now have a better understanding of the molecular mechanisms 

associated with levamisole AChR signaling. Each AChR is composed of five subunits 

formed in a ring in the membrane with the channel pore in the center (Figure I in Box 2); the 

subunits are either α subunits with two vicinal cysteines present or β (non-α) subunits that 

lack these cysteines (Corringer et al., 1998; Changeux and Edelstein, 2005). There are at 

least 27 genes for AChR subunits in C. elegans. The levamisole receptor channel was found 

to be composed of five different subunits (Jones and Sattelle, 2004). Each subunit is 

approximately 500 amino acids in length and harbors four transmembrane regions (M1, M2, 

M3, and M4). The M2 region forms the lining of the ion channel pore. In C. elegans (Box 2; 

Figure 7.1), three separate genes code for the levamisole α subunits: unc-63, unc-38, lev-8, 

and two genes code for the β subunits, unc-29 and lev-1 (Fleming et al., 1997; Culetto et al., 

2004; Towers et al., 2005; Boulin et al., 2008). The canonical agonist binding sites are 

assumed to be between the positive face of the α subunit and the negative face of the adjacent 

β subunit; the adjacent pairs of subunits are not identical, so the agonist binding sites are not 

equivalent (Figure I in Box 2). Evidence from other preparations leads us to believe that at 

least two agonist molecules need to bind to open the receptor channel effectively. In addition 

to the canonical sites, anthelmintics may also bind to noncanonical sites formed between the 

positive face of the β subunit and the negative face of an α subunit and increase opening of 
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the ion channel (Evans and Martin, 1996; Wu et al., 2008; Seo et al., 2009). Thus, the site of 

action and the potency of a cholinergic anthelmintic will depend upon the channel subunit 

composition. 

In addition to the requirement for the subunits, full function of the levamisole channel is 

associated with proteins derived from at least seven other genes: lev-9, lev-10, tpa-1, tax-6, 

soc-1, nra-1, and oig-4 (Figure 7.1) (Fleming et al., 1996; Gally et al., 2004; Martin and 

Robertson, 2007); it is anticipated that other associated proteins will be recognized in the 

future. Null mutants of these genes can produce a degree of levamisole resistance. The gene 

unc-68, which encodes a ryanodine receptor (Maryon et al., 1996), is associated with 

amplifying the calcium signal following opening of the levamisole receptor, and two other 

genes, unc-22 and lev-11 (Fleming et al., 1997), are associated with contractile elements of 

muscle and produce levamisole resistance by reducing the muscle response to the drug. In 

addition to these genes, other null mutants of genes that can produce levamisole resistance 

are involved in processing and assembly of the subunits; these genes are nra-2, nra-4, ric-3, 

unc-74, and unc-50 (Gottschalk et al., 2005; Eimer et al., 2007; Almedom et al., 2009). RIC-

3 is a small transmembrane protein, which is a chaperone promoting nAChR folding in the 

endoplasmic reticulum (Halevi et al., 2002). The gene unc-74 encodes a thioredoxin protein 

required for the expression of levamisole AChR subunits (Haugstetter et al., 2005). The gene 

unc-50 encodes a transmembrane protein in the Golgi apparatus (Eimer et al., 2007). In unc-

50 mutants, levamisole AChR subunits are directed to lysosomes for degradation. These 

three ancillary proteins have been widely conserved through evolution from nematodes to 

humans and have been used for the expression of levamisole receptors in Xenopus oocytes. 

In addition to these proteins, microRNAs (miRNAs) are also involved in regulation of 
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receptor subunit expression; miR-1 is one specific miRNA that binds to the mRNA of UNC-

63 and UNC-29 but not LEV-1 or LEV-8 (Simon et al., 2008). A null mutant of miR-1 leads 

to reduced sensitivity to levamisole; although the mechanism for this is unclear, it is 

suggested to involve a change in receptor expression (Simon et al., 2008).  
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Figure 7.0 Acetylcholine receptor (AChR) single channel currents from Oesophagostomum 

dentatum using the patch clamp technique (Robertson et al., 1999, 2000) 

 (a) Diagram of the production of the membrane vesicles and patch pipette used to record the 

levamisole-activated AChR channel currents; (inset) adult female O. dentatum. (b) Examples 

of levamisole-activated channel currents recorded at -75 mV and +75 mV patch potentials 

and the current voltage plot showing a linear relationship, zero reversal potential, and slope 

giving a channel conductance of 42 pS. (c) Channel conductance distribution for the 

anthelmintic sensitive isolate (wild type) showing the four peaks (fitted using the sum of four 
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normal distributions). The peaks illustrate the presence of four subtypes: G25 pS, G35 pS, 

G40 pS, and G45 pS. In the levamisole-resistant (LEVR) isolate, there were only three 

subtypes present because the G35 pS subtype was missing. In the pyrantel-resistant isolate, 

the four G subtypes were present and included the G35 pS subtype, but there were fewer 

channels present in the muscle compared with the anthelmintic sensitive (wild) isolate. (d) 

Diagram of the different channel subtypes detected and presented by size on a basis of the 

conductances in O. dentatum; G35 pS is not present in levamisole-resistant isolates, but 

present in pyrantel isolates. 
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C5.0 Molecular diversity: levamisole AChR subunits in parasitic nematodes 

Molecular cloning and bioinformatic searches in parasitic nematode genomes and 

transcriptome databanks have identified homologs of unc-29, unc-38, and unc-63 all across 

the phylum Nematoda (Williamson et al., 2007; Neveu et al., 2010). The conservation of 

these genes in distantly related nematode species may reflect the common and important role 

they play in the function of the levamisole AChR. It is noteworthy that in the trichostrongylid 

species, H. contortus and Teladorsagia circumcincta, that there are four distinct unc-29 

paralogs which have been identified (Neveu et al., 2010). Unlike the unc-29, unc-38, and 

unc-63 genes, orthologs of the lev-1 gene have only been identified in Clade V nematode 

species (C. elegans and trichostrongylids). There is currently no evidence for lev-1 orthologs 

in nematodes of Clade III species (A. suum or B. malayi) nor in Clades I, II, or IV. 

Intriguingly, lev-1 homologs from H. contortus, T. circumcincta, and Trichostrongylus 

colubriformis lack a signal peptide raising questions about the contribution of LEV-1 to the 

function of levamisole AChRs (Neveu et al., 2010). Because AChR subunit oligomerization 

takes place within the endoplasmic reticulum, the absence of a signal peptide for Hco-LEV-

1, Tci- LEV-1, and Tco-LEV-1 suggests that the subunit is processed differently; perhaps it is 

not involved in levamisole AChR construction, or it could associate with other levamisole 

AChR subunits using a molecular pathway that remains to be identified. Finally, there is also 

no evidence to date for a gene orthologous to lev-8 in the trichostrongylids, despite intensive 

laboratory and bioinformatics searches (Williamson et al., 2007; Neveu et al., 2010). 

However, homologs of the acr-8 gene that are closely related to lev-8 appear to be well 

conserved in parasitic nematode species (Boulin et al., 2011). The similarity between H. 

contortus, T. circumcincta, and T. colubriformis ACR-8 homologs and the C. elegans 
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sequence is spread over the length of the primary amino acid sequence. However, the motif, 

YxxCC, which is part of the ligand binding site is conserved for trichostrongylid ACR-8 and 

C. elegans LEV-8 (YPGCC versus YAGCC for Cel-ACR-8), suggesting that conservation of 

these residues is associated with specific agonist-binding properties. It has been hypothesized 

that the lev-8 and acr-8 genes arose from a duplication that occurred after the divergence 

between strongyloidea and rhabditoidea (Boulin et al., 2011). Alternatively, a common 

ancestor that had both lev-8 and acr-8 may have occurred with the lev-8 being lost in the 

trichostrongylids. Another persuasive observation for ACR-8 being a subunit of levamisole 

AChR subtypes in parasitic nematodes is that levamisole resistance in H. contortus has been 

associated with the presence of truncated ACR-8 subunits (Fauvin et al., 2010) (Box 3).  
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Figure 7.1 Assembly and function of levamisole receptors.  

Caenorhabditis elegans levamisole-sensitive AChR channels in the muscle membrane are 

formed by five subunits (UNC-38, blue; UNC-29, purple; UNC-63, yellow; LEV-1, green; 

and LEV-8, red) with normal function being supported by OIG-4, NRA-1, NRA-2, NRA-4, 

SOC-1, TAX-6, TPA-1, LEV-9, and LEV-10 proteins. Once the levamisole AChR channel 

opens, calcium enters and its signal is amplified by the ryanodine receptor (UNC-68); the 

increased calcium then initiates contraction, requiring the proteins UNC-22 and LEV-11. The 

expression of the levamisole receptor subunits requires RNAs encoding the five subunits 

together with three C. elegans ancillary proteins involved in AChR assembly (RIC-3), 

folding (UNC-74), and trafficking (UNC-50) (Halevi et al., 2002; Haugstetter et al., 2005; 
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Eimer et al., 2007). miRNA (miR-1) is also known to regulate and modulate the expression 

of subunit RNA. 

Abbreviations: ER, endoplasmic reticulum; SR, sarcoplasmic reticulum. 
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C6.0 Functional diversity: Xenopus expression of different levamisole AChR subtypes 

After cloning C. elegans levamisole receptor subunits, it became possible to express the 

receptor in Xenopus oocytes. Robust expression of the levamisole receptor from C. elegans 

required injection of cRNA of five subunits (UNC-38, UNC-63, LEV-8, UNC-29, and LEV-

1) (Figure 7.2a) and three ancillary proteins (UNC-74, RIC-3, and UNC-50) (Boulin et al., 

2011). The maximum response to acetylcholine is much greater than the response to 

levamisole with no nicotine response with this expressed C. elegans levamisole AChR; the 

lack of response to nicotine demonstrates that the C. elegans receptor is pharmacologically 

different from the levamisole receptors of some parasitic nematodes. Expression of an 

acetylcholine- and nicotine-sensitive C. elegans muscle homomeric receptor was achieved by 

injecting ACR-16 cRNA (Figure 7.2b) (Raymond et al., 2000; Boulin et al., 2008). Two 

levamisole-sensitive AChR subtypes from A. suum required only two subunits (UNC-38 and 

UNC-29) and did not require the accessory proteins (Williamson et al., 2009). Two types of 

receptor were produced: (i) one type, more sensitive to levamisole and pyrantel than nicotine, 

was observed when more UNC-29 than UNC-38 cRNA was injected (Figure 7.2c; Box 1); 

(ii) the other type that was more sensitive to oxantel and nicotine than levamisole was 

observed when more UNC-38 than UNC-29 cRNA was injected (Figure 7.2d). It is suggested 

that two types of levamisole receptor are produced by different stoichiometric combinations 

of UNC-38 and UNC-29: the levamisole/pyrantel receptor by (UNC-38)2:(UNC-29)3 and the 

nicotine, oxantel receptor by (UNC-38)3:(UNC-29)2. These observations illustrate that the 

levamisole AChR subunit structure and anthelmintic sensitivity can vary and is plastic. 

Expression of the receptor subunits derived from H. contortus, which is more 

phylogenetically related to C. elegans, was also different. Expression of a functional receptor 
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highly responsive to levamisole required the presence of four subunits (UNC-63, UNC-29, 

UNC-38, and ACR-8) and the three ancillary proteins (Figure 7.2e) (Boulin et al., 2011). 

This receptor, referred to as Hco-L-AChR1, is more sensitive to levamisole than 

acetylcholine and is poorly responsive to pyrantel and nicotine (Figure 7.2f). When the 

cRNA for ACR-8 is omitted, the UNC-63, UNC-29, UNC- 38 subunit combination gave rise 

to a second, pharmacologically different levamisole AChR referred to as Hco-LAChR2 

(Figure 7.2f). The Hco-L-AChR2 was more sensitive to pyrantel and acetylcholine than 

levamisole. Therefore, two distinct subtypes of recombinant H. contortus levamisole AChR 

could be distinguished, possibly mirroring some of the levamisole AChR diversity revealed 

with single channel recording experiments performed on the closely related species O. 

dentatum (Figure 1). The crucial role for the ACR-8 subunit in levamisole sensitivity is 

highlighted by the fact that the Hco-L-AChR1 and Hco-L-AChR2 only differ by the presence 

or absence of Hco-ACR-8. In C. elegans, the functional expression of the C. elegans 

levamisole AChR did not require ACR-8 subunits (Boulin et al., 2008). Of interest in 

parasitic nematodes is the potential role that ACR-8 plays in levamisole resistance, as 

absence of ACR-8 in the expressed receptors (Figure 7.2f) gives rise to the Hco-L-AChR2 

receptor, which is less sensitive to levamisole but highly responsive to pyrantel. Thus, an acr-

8 null mutant parasitic nematode isolate may be sensitive to pyrantel but not levamisole. 

 

C7.0 Modeling the levamisole receptor 

The family of ligand gated ion channels is present in nearly all animal groups and has also 

been found in bacteria, predating eukaryotes (Chen et al., 1999). The subunit genes of this 
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family may be extremely divergent in sequence but retain a highly conserved structure and 

specific functional motifs (Box 2). This allows the use of known crystal structures to serve as 

templates for the prediction of related ion channel structures and identification of 

acetylcholine and nicotine within the ligand binding pocket of the AChR (Brejc et al., 2001; 

Le Novere et al., 2002). The models identify potentially important hydrogen bonds formed 

upon ligand binding and are able to discriminate between compounds with high and low 

experimentally determined LD50 values. In the future, we could use this approach to 

examine levamisole and pyrantel binding to the various levamisole-sensitive AChRs of 

identified parasitic nematodes. The next challenge is for in silico prediction of ligand 

receptor interaction for novel compounds. The example of cytisinoid derivatives and their 

affinity for acetylcholine binding protein demonstrates that it is possible to achieve a good 

correlation over a wide range of predicted binding energy and IC50 values (Abin-Carriquiry 

et al., 2010). 

The neurotransmitter binding pocket lies between two adjacent subunits of the channel 

pentamer (Box 2), formed from three loops of the positive subunit (known as the A, B, and C 

loops) and three β-strands of the negative subunit (loops D, E, and F). The closed, unbound 

form of the Torpedo fish AChR is an asymmetric pentamer that becomes symmetrical in the 

presence of acetylcholine (Unwin, 1995). Comparison of a refined version of this structure 

and that of the channel produced in the open channel configuration shows that the c-loop 

closes around the bound neurotransmitter, a movement of perhaps 8 A°, accompanied by 

significant changes in the β-sheet regions of the ligand binding domain and rotation of the 

transmembrane domain, opening a path for the flow of cations (Unwin, 1995; Brejc et al., 

2001). Modeling interactions of such flexible structures is still being developed and 
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simulation of the ligand–receptor interaction will require either an ensemble of receptors in 

different physical states, or use of molecular dynamics to produce time simulations of the 

ligand bound structure. Snapshots can be evaluated to determine the stability of ligand 

binding and changes in flexibility of residues that interact with the ligand (Brandsdal et al., 

2003). Although still at the limits of protein modeling, these techniques will help us to 

understand details of nAChR function and their interaction with levamisole and other 

anthelmintic compounds. 

 

C8.0 Resistance: mechanisms of resistance for parasites in vivo 

In sensitive O. dentatum parasites, levamisole readily activates and opens the receptor 

channels (Figure 7.0b) frequently. In the levamisole and pyrantel resistant isolates, the 

channels open infrequently and there are fewer receptor channels present in the muscle 

membrane (Robertson et al., 1999, 2000). A histogram of single channel conductances from 

the anthelmintic sensitive isolate of O. dentatum (Robertson et al., 1999, 2000) shows the 

presence of four separate channel conductance subtypes: G25 pS, G35 pS, G40 pS, G45 pS 

(Figure 7.0c,d). Interestingly, in the levamisole-resistant isolate the G35 pS peak is missing, 

but in the pyrantel-resistant isolate this peak is still present (Robertson et al., 1999, 2000). 

These observations suggest that resistance is associated with an overall reduction in the 

number of receptors, that levamisole resistance may be associated specifically with loss of 

the G 35 pS subtype but that pyrantel resistance may be different and is not associated with a 

loss of a specific subtype. We might expect that the changes associated with resistance may 

lead to subtle changes in motility without compromising the ability of the parasite to 
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complete its life cycle. The changes in motility have been detected by detailed phenotyping 

(Carr et al., 2011; Chen et al., 2011). 

 

Figure 7.2 Diagram of possible stoichiometric arrangements of some different acetylcholine 

receptors (AChRs) from Caenorhabditis elegans, Ascaris suum, and Haemonchus contortus 

and the relative potencies of anthelmintic agonists 

 (a) The C. elegans levamisole AChR. (b) The C. elegans muscle nicotine AChR. (c) The A. 

suum AChR where levamisole is more potent than nicotine when more cRNA for UNC-29 

than UNC-38 is injected. (d) The A. suum AChR where nicotine is more potent than 

levamisole when more cRNA for UNC-38 than UNC-29 is injected into the Xenopus oocytes 

for expression. (e) The H. contortus L-AChR 1 receptor, which is most sensitive to 
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levamisole. (f) The H. contortus L-AChR2, which is most sensitive to pyrantel (Boulin et al., 

2011). (g) Currents recorded from the Xenopus oocyte expressing H. contortus Hco-L-

AChR1 receptor when 100 mM acetylcholine (ACh), 100 mM levamisole (Lev), 100 mM 

pyrantel (Pyr), 100 mM nicotine (Nic), or 100 mM dimethylphenylpiperazinium (DMPP) are 

applied. Levamisole is the most potent agonist. (h) Currents recorded from the Xenopus 

oocyte expressing H. contortus Hco-L-AChR2 receptor when 100 mM ACh, 100 mM Lev, 

100 mM Pyr, 100 mM Nic, or 100 mM DMPP are applied. Pyrantel produces the biggest 

peak response.  
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C9.0 Phenotyping sensitive and resistant isolates: microfluidics 

We have seen above that there are a range of different levamisole receptor subtypes 

suggesting some redundancy and that there may be differences between sensitive and 

resistant isolates. It is now possible to screen and observe effects of drugs such as levamisole 

affecting motion of L3 larvae of parasitic nematodes with greater resolution using computer 

tracking and microfluidic technology (Carr et al., 2011; Chen et al., 2011). These 

multiparameter microfluidic bioassays were developed to observe the innate locomotory 

properties of larval movement along with transient and real time responses to the application 

of anthelmintics within a single experiment. 

An electrical field is used in the platform to guide the movement of the larvae (electrotaxis) 

into and out of the drug wells. Video recording of the experiment along with automatic worm 

tracking software reveals important information about changes in the locomotion of the 

worm during entry exposure and exit periods from the drug. The tracking software used can 

measure subtle locomotion changes in the microfluidic device in the presence or in the 

absence of drugs. The approach allows quantification of transient drug effects and 

measurement of locomotory parameters such as the sinusoidal properties of the larval 

movement (velocity, wavelength, frequency, and amplitude). The more precise 

measurements of locomotion can detect levamisole resistance in the absence of drugs from 

changes in the parameters of locomotion, as well as changes associated with application of 

anthelmintics (Carr et al., 2011; Chen et al., 2011). This new method of quantitative 

phenotyping offers a new way to detect and investigate anthelmintic resistance and 

anthelmintic interactions that affect the phenotype of locomotion associated with subtle 

changes in receptor subtypes. 
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C10.0 Investigating levamisole resistance at the molecular level in parasitic nematodes 

Four sets of proteins have been found to contribute to levamisole resistance in C. elegans. 

The four sets are: (i) levamisole-sensitive AChR subunits; (ii) proteins involved in processing 

and assembly of levamisole AChR channel subunits; (iii) proteins involved in regulating the 

levamisole AChR channel; and (iv) proteins involved in the calcium contraction signaling 

cascade (Figure 7.1; Box 3). In parasitic nematodes, searches for expression or sequence 

polymorphisms associated with levamisole resistance mainly focused on levamisole AChR 

subunits. In the strongylid parasite, Ancylostoma caninum (dog hookworm), genes 

orthologous to unc-38, unc-63, and unc-29 have reduced expression in a highly pyrantel-

resistant isolate when compared with a low pyrantel-resistant isolate (Kopp et al., 2007). By 

contrast, in the trichostrongylid species H. contortus, T. circumcincta, and T. colubriformis, 

expression of complete coding mRNAs corresponding to unc-38, unc-63, unc-29, and lev-1 

homologs were found to be similar in both levamisole-susceptible and -resistant isolates. 

However, in addition to full-length coding mRNAs corresponding to unc-63 orthologs, 

abbreviated isoforms (unc-63b) were found to be specifically expressed in some levamisole-

resistant isolates from the three nematode species, suggesting a possible role of the truncated 

UNC-63 subunit in levamisole resistance (Neveu et al., 2010). Transcript levels may also 

change with resistance (Williamson et al., 2011). Recent progress with the functional 

expression of nematode levamisole AChRs in Xenopus oocytes has provided a unique 

opportunity to test the role of truncated subunits in levamisole resistance (Boulin et al., 

2011). 
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The truncated Hco-unc-63b transcript in a H. contortus isolate encoded a protein of 343 

amino acids that has two transmembrane domains (TM1 and TM2). In Xenopus oocytes, 

expression of the truncated Hco-UNC-63b along with the full-length Hco-unc-63a, Hco-unc-

29.1, Hco-unc-38, and Hco-acr-8 cRNA produced a dose-dependent inhibition of the Hco-L-

AChR1 expression (Boulin et al., 2011). The results show that the truncated Hco-unc-63b is 

dominant negative, inhibiting the wild type Hco-UNC-63 subunits and therefore could induce 

a levamisole-resistant phenotype in parasites expressing this mutant form. Expression of the 

truncated UNC-63b is predicted to reduce expression of both the Hco-L-AChR1 and Hco-L-

AChR2 receptors. Hence, if such a dominant negative effect also occurs in vivo, a cross-

resistance to levamisole and pyrantel could be expected in the H. contortus isolates 

expressing Hco-UNC-63b. The role of truncated ACR-8, which is associated with levamisole 

resistance, (Fauvin et al., 2010) remains to be tested in expression experiments. 

 

C11.0 Concluding remarks 

Better molecular and functional platforms have allowed a tremendous increase in our 

understanding of: (i) the biology of the levamisole AChR channel; (ii) how there are several 

diverse pharmacological subtypes; (iii) how the subunit structure is plastic and affects drug 

sensitivity; and (iv) how subunit truncation (UNC-63 or ACR-8) or reduced subunit 

expression may play a role in levamisole resistance. There is optimism that the understanding 

of the molecular and pharmacological mechanism (or mechanisms) of resistance will allow 

molecular diagnostic tests for resistance and better pharmacological therapies to be used, 

including combination drug therapy. The current advances in levamisole receptor molecular 
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biology have bridged the gap between genes and the physiological expression of anthelmintic 

sensitivity. Further examination of the various receptor subtypes in important parasites such 

as filaria, hookworm, and whipworm, the range of nematode parasite AChR channels in 

muscle receptors and other tissues, and the changes brought about by resistance and altered 

subunit composition will provide a deeper understanding of AChR functions and the 

mechanisms that control the evolution of their diversity. In the future, new approaches that 

include novel methods to measure small changes in phenotype such as microfluidics, the 

development of molecular techniques to manipulate parasites in vivo, and computer 

simulation of the ligand receptor interaction will usher in a new awakening for receptor 

research. Over the next 10 years we should expect to see a more detailed map of AChR 

function as well as new anthelmintics that target these receptors. 
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